Spaces:
Paused
Paused
File size: 5,810 Bytes
15c06cc 0c5a382 919ef54 e3dc1e5 919ef54 15c06cc edee20e 1149742 15c06cc 0c5a382 15c06cc 919ef54 1149742 0c5a382 1149742 8321f99 1149742 919ef54 0c5a382 919ef54 1149742 0c5a382 1149742 0c5a382 1149742 8321f99 1149742 919ef54 0c5a382 919ef54 1149742 0c5a382 1149742 8321f99 0c5a382 1149742 0c5a382 1149742 0c5a382 919ef54 1149742 919ef54 1149742 919ef54 0c5a382 1149742 919ef54 1149742 919ef54 1149742 0c5a382 e3dc1e5 1149742 0c5a382 1149742 0c5a382 8321f99 0c5a382 8321f99 0c5a382 1149742 0c5a382 8321f99 0c5a382 8321f99 0c5a382 1149742 8321f99 0c5a382 1149742 8321f99 0c5a382 e3dc1e5 0c5a382 e3dc1e5 0c5a382 919ef54 e3dc1e5 0c5a382 1149742 0c5a382 919ef54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
import gradio as gr
import tempfile
import imageio
import torch
import time
from transformers import pipeline
from diffusers import DiffusionPipeline
user_input.submit(
codette_terminal_limited, # <== use your chosen function name here
inputs=[user_input, model_dropdown, generate_image_toggle, generate_video_toggle, session_id, batch_size_slider, video_steps_slider, fps_slider],
outputs=[output_text, output_image, output_video]
)
# ---------- Configuration ----------
AVAILABLE_MODELS = {
"GPT-2 (small, fast)": "gpt2",
"Falcon (TII UAE)": "tiiuae/falcon-7b-instruct",
"Mistral (OpenAccess)": "mistralai/Mistral-7B-v0.1"
}
device = "cuda" if torch.cuda.is_available() else "cpu"
text_model_cache = {}
chat_memory = {}
# ---------- Load Image Generator ----------
try:
image_generator = DiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
safety_checker=None,
torch_dtype=torch.float16 if device == "cuda" else torch.float32
)
image_generator.to(device)
image_enabled = True
except Exception as e:
print(f"[Image Model Load Error]: {e}")
image_generator = None
image_enabled = False
# ---------- Load Video Generator ----------
try:
video_pipeline = DiffusionPipeline.from_pretrained(
"damo-vilab/text-to-video-ms-1.7b",
safety_checker=None,
torch_dtype=torch.float16 if device == "cuda" else torch.float32
)
video_pipeline.to(device)
video_enabled = True
except Exception as e:
print(f"[Video Model Load Error]: {e}")
video_pipeline = None
video_enabled = False
# ---------- Streamed Response Generator ----------
def codette_terminal(prompt, model_name, generate_image, generate_video, session_id, batch_size, video_steps, fps):
if session_id not in chat_memory:
chat_memory[session_id] = []
if prompt.lower() in ["exit", "quit"]:
chat_memory[session_id] = []
yield "π§ Codette signing off... Session reset.", None, None
return
# Load text model if not already loaded
if model_name not in text_model_cache:
try:
text_model_cache[model_name] = pipeline(
"text-generation",
model=AVAILABLE_MODELS[model_name],
device=0 if device == "cuda" else -1
)
except Exception as e:
yield f"[Text model error]: {e}", None, None
return
generator = text_model_cache[model_name]
# Generate response
try:
output = generator(prompt, max_length=100, do_sample=True, num_return_sequences=1)[0]['generated_text'].strip()
except Exception as e:
yield f"[Text generation error]: {e}", None, None
return
# Stream the output
response_so_far = ""
for char in output:
response_so_far += char
temp_log = chat_memory[session_id][:]
temp_log.append(f"ποΈ You > {prompt}")
temp_log.append(f"π§ Codette > {response_so_far}")
yield "\n".join(temp_log[-10:]), None, None
time.sleep(0.01)
# Finalize chat memory
chat_memory[session_id].append(f"ποΈ You > {prompt}")
chat_memory[session_id].append(f"π§ Codette > {output}")
imgs = None
if generate_image and image_enabled:
try:
result = image_generator(prompt, num_images_per_prompt=batch_size)
imgs = result.images
except Exception as e:
response_so_far += f"\n[Image error]: {e}"
vid = None
if generate_video and video_enabled:
try:
result = video_pipeline(prompt, num_inference_steps=video_steps)
frames = result.frames
temp_video_path = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name
imageio.mimsave(temp_video_path, frames, fps=fps)
vid = temp_video_path
except Exception as e:
response_so_far += f"\n[Video error]: {e}"
yield "\n".join(chat_memory[session_id][-10:]), imgs, vid
# ---------- Gradio UI ----------
with gr.Blocks(title="𧬠Codette Terminal β Streamed AI Chat") as demo:
gr.Markdown("## 𧬠Codette Terminal (Chat + Image + Video + Batch + NSFW OK)")
gr.Markdown("Type a prompt, select your model, and configure generation options. Type `'exit'` to reset.")
with gr.Row():
session_id = gr.Textbox(value="session_default", visible=False)
model_dropdown = gr.Dropdown(choices=list(AVAILABLE_MODELS.keys()), value="GPT-2 (small, fast)", label="Language Model")
with gr.Row():
generate_image_toggle = gr.Checkbox(label="Generate Image(s)?", value=False, interactive=image_enabled)
generate_video_toggle = gr.Checkbox(label="Generate Video?", value=False, interactive=video_enabled)
with gr.Row():
batch_size_slider = gr.Slider(label="Number of Images", minimum=1, maximum=4, step=1, value=1)
video_steps_slider = gr.Slider(label="Video Inference Steps", minimum=10, maximum=100, step=10, value=50)
fps_slider = gr.Slider(label="Video FPS", minimum=4, maximum=24, step=2, value=8)
user_input = gr.Textbox(label="Your Prompt", placeholder="e.g. A robot dreaming on Mars", lines=1)
output_text = gr.Textbox(label="Codette Output", lines=15, interactive=False)
output_image = gr.Gallery(label="Generated Image(s)", columns=2)
output_video = gr.Video(label="Generated Video")
user_input.submit(
codette_terminal,
inputs=[
user_input, model_dropdown, generate_image_toggle, generate_video_toggle,
session_id, batch_size_slider, video_steps_slider, fps_slider
],
outputs=[output_text, output_image, output_video]
)
# ---------- Launch ----------
if __name__ == "__main__":
demo.launch()
|