Rahul-8799 commited on
Commit
b14b9f9
·
verified ·
1 Parent(s): 76ff4a1

Update src/streamlit_app.py

Browse files
Files changed (1) hide show
  1. src/streamlit_app.py +13 -7
src/streamlit_app.py CHANGED
@@ -1,17 +1,22 @@
1
- from transformers import AutoTokenizer, AutoModelForCausalLM
 
2
  import streamlit as st
3
  import torch
4
- import os
5
-
6
 
7
  st.title("Tokenizer Test Space")
8
-
9
  model_id = "google/gemma-2b-it" # Test with the official model first
10
  # model_id = "Rahul-8799/project_manager_gemma3" # If the official model works, try yours
11
 
 
 
 
 
 
 
12
  try:
13
  st.write(f"Attempting to load tokenizer for {model_id}...")
14
- tokenizer = AutoTokenizer.from_pretrained(model_id)
 
15
  st.success("Tokenizer loaded successfully!")
16
  st.write("Tokenizer details:", tokenizer)
17
  except Exception as e:
@@ -21,19 +26,20 @@ except Exception as e:
21
  try:
22
  st.write(f"Attempting to load model for {model_id}...")
23
  # Assuming you want 4-bit quantization for Gemma
24
- from transformers import BitsAndBytesConfig
25
  quantization_config = BitsAndBytesConfig(
26
  load_in_4bit=True,
27
  bnb_4bit_quant_type="nf4",
28
  bnb_4bit_compute_dtype=torch.bfloat16,
29
  bnb_4bit_use_double_quant=False,
30
  )
 
31
  model = AutoModelForCausalLM.from_pretrained(
32
  model_id,
33
  quantization_config=quantization_config,
34
  low_cpu_mem_usage=True,
35
  torch_dtype=torch.bfloat16,
36
- trust_remote_code=True
 
37
  )
38
  st.success("Model loaded successfully!")
39
  st.write("Model details:", model)
 
1
+ import os
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
3
  import streamlit as st
4
  import torch
 
 
5
 
6
  st.title("Tokenizer Test Space")
 
7
  model_id = "google/gemma-2b-it" # Test with the official model first
8
  # model_id = "Rahul-8799/project_manager_gemma3" # If the official model works, try yours
9
 
10
+ # Define a writable directory for the cache. /tmp is usually writable in Spaces.
11
+ cache_directory = "/tmp/hf_cache"
12
+
13
+ # Ensure the cache directory exists (good practice, though hf_hub might handle it)
14
+ os.makedirs(cache_directory, exist_ok=True)
15
+
16
  try:
17
  st.write(f"Attempting to load tokenizer for {model_id}...")
18
+ # Explicitly pass the cache_dir
19
+ tokenizer = AutoTokenizer.from_pretrained(model_id, cache_dir=cache_directory)
20
  st.success("Tokenizer loaded successfully!")
21
  st.write("Tokenizer details:", tokenizer)
22
  except Exception as e:
 
26
  try:
27
  st.write(f"Attempting to load model for {model_id}...")
28
  # Assuming you want 4-bit quantization for Gemma
 
29
  quantization_config = BitsAndBytesConfig(
30
  load_in_4bit=True,
31
  bnb_4bit_quant_type="nf4",
32
  bnb_4bit_compute_dtype=torch.bfloat16,
33
  bnb_4bit_use_double_quant=False,
34
  )
35
+ # Explicitly pass the cache_dir
36
  model = AutoModelForCausalLM.from_pretrained(
37
  model_id,
38
  quantization_config=quantization_config,
39
  low_cpu_mem_usage=True,
40
  torch_dtype=torch.bfloat16,
41
+ trust_remote_code=True,
42
+ cache_dir=cache_directory # Add this line
43
  )
44
  st.success("Model loaded successfully!")
45
  st.write("Model details:", model)