Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +39 -39
src/streamlit_app.py
CHANGED
@@ -1,40 +1,40 @@
|
|
1 |
-
import
|
2 |
-
import numpy as np
|
3 |
-
import pandas as pd
|
4 |
import streamlit as st
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
|
2 |
import streamlit as st
|
3 |
+
import torch
|
4 |
+
|
5 |
+
st.title("Tokenizer Test Space")
|
6 |
+
|
7 |
+
model_id = "google/gemma-2b-it" # Test with the official model first
|
8 |
+
# model_id = "Rahul-8799/project_manager_gemma3" # If the official model works, try yours
|
9 |
+
|
10 |
+
try:
|
11 |
+
st.write(f"Attempting to load tokenizer for {model_id}...")
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
13 |
+
st.success("Tokenizer loaded successfully!")
|
14 |
+
st.write("Tokenizer details:", tokenizer)
|
15 |
+
except Exception as e:
|
16 |
+
st.error(f"Error loading tokenizer: {e}")
|
17 |
+
st.exception(e) # Show full traceback
|
18 |
+
|
19 |
+
try:
|
20 |
+
st.write(f"Attempting to load model for {model_id}...")
|
21 |
+
# Assuming you want 4-bit quantization for Gemma
|
22 |
+
from transformers import BitsAndBytesConfig
|
23 |
+
quantization_config = BitsAndBytesConfig(
|
24 |
+
load_in_4bit=True,
|
25 |
+
bnb_4bit_quant_type="nf4",
|
26 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
27 |
+
bnb_4bit_use_double_quant=False,
|
28 |
+
)
|
29 |
+
model = AutoModelForCausalLM.from_pretrained(
|
30 |
+
model_id,
|
31 |
+
quantization_config=quantization_config,
|
32 |
+
low_cpu_mem_usage=True,
|
33 |
+
torch_dtype=torch.bfloat16,
|
34 |
+
trust_remote_code=True
|
35 |
+
)
|
36 |
+
st.success("Model loaded successfully!")
|
37 |
+
st.write("Model details:", model)
|
38 |
+
except Exception as e:
|
39 |
+
st.error(f"Error loading model: {e}")
|
40 |
+
st.exception(e)
|