|
"""PyTorch SelecSLS Net example for ImageNet Classification |
|
License: CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/legalcode) |
|
Author: Dushyant Mehta (@mehtadushy) |
|
|
|
SelecSLS (core) Network Architecture as proposed in "XNect: Real-time Multi-person 3D |
|
Human Pose Estimation with a Single RGB Camera, Mehta et al." |
|
https://arxiv.org/abs/1907.00837 |
|
|
|
Based on ResNet implementation in https://github.com/rwightman/pytorch-image-models |
|
and SelecSLS Net implementation in https://github.com/mehtadushy/SelecSLS-Pytorch |
|
""" |
|
from typing import List |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD |
|
from .helpers import build_model_with_cfg |
|
from .layers import create_classifier |
|
from .registry import register_model |
|
|
|
__all__ = ['SelecSLS'] |
|
|
|
|
|
def _cfg(url='', **kwargs): |
|
return { |
|
'url': url, |
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (4, 4), |
|
'crop_pct': 0.875, 'interpolation': 'bilinear', |
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, |
|
'first_conv': 'stem.0', 'classifier': 'fc', |
|
**kwargs |
|
} |
|
|
|
|
|
default_cfgs = { |
|
'selecsls42': _cfg( |
|
url='', |
|
interpolation='bicubic'), |
|
'selecsls42b': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-selecsls/selecsls42b-8af30141.pth', |
|
interpolation='bicubic'), |
|
'selecsls60': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-selecsls/selecsls60-bbf87526.pth', |
|
interpolation='bicubic'), |
|
'selecsls60b': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-selecsls/selecsls60b-94e619b5.pth', |
|
interpolation='bicubic'), |
|
'selecsls84': _cfg( |
|
url='', |
|
interpolation='bicubic'), |
|
} |
|
|
|
|
|
class SequentialList(nn.Sequential): |
|
|
|
def __init__(self, *args): |
|
super(SequentialList, self).__init__(*args) |
|
|
|
@torch.jit._overload_method |
|
def forward(self, x): |
|
|
|
pass |
|
|
|
@torch.jit._overload_method |
|
def forward(self, x): |
|
|
|
pass |
|
|
|
def forward(self, x) -> List[torch.Tensor]: |
|
for module in self: |
|
x = module(x) |
|
return x |
|
|
|
|
|
class SelectSeq(nn.Module): |
|
def __init__(self, mode='index', index=0): |
|
super(SelectSeq, self).__init__() |
|
self.mode = mode |
|
self.index = index |
|
|
|
@torch.jit._overload_method |
|
def forward(self, x): |
|
|
|
pass |
|
|
|
@torch.jit._overload_method |
|
def forward(self, x): |
|
|
|
pass |
|
|
|
def forward(self, x) -> torch.Tensor: |
|
if self.mode == 'index': |
|
return x[self.index] |
|
else: |
|
return torch.cat(x, dim=1) |
|
|
|
|
|
def conv_bn(in_chs, out_chs, k=3, stride=1, padding=None, dilation=1): |
|
if padding is None: |
|
padding = ((stride - 1) + dilation * (k - 1)) // 2 |
|
return nn.Sequential( |
|
nn.Conv2d(in_chs, out_chs, k, stride, padding=padding, dilation=dilation, bias=False), |
|
nn.BatchNorm2d(out_chs), |
|
nn.ReLU(inplace=True) |
|
) |
|
|
|
|
|
class SelecSLSBlock(nn.Module): |
|
def __init__(self, in_chs, skip_chs, mid_chs, out_chs, is_first, stride, dilation=1): |
|
super(SelecSLSBlock, self).__init__() |
|
self.stride = stride |
|
self.is_first = is_first |
|
assert stride in [1, 2] |
|
|
|
|
|
self.conv1 = conv_bn(in_chs, mid_chs, 3, stride, dilation=dilation) |
|
self.conv2 = conv_bn(mid_chs, mid_chs, 1) |
|
self.conv3 = conv_bn(mid_chs, mid_chs // 2, 3) |
|
self.conv4 = conv_bn(mid_chs // 2, mid_chs, 1) |
|
self.conv5 = conv_bn(mid_chs, mid_chs // 2, 3) |
|
self.conv6 = conv_bn(2 * mid_chs + (0 if is_first else skip_chs), out_chs, 1) |
|
|
|
def forward(self, x: List[torch.Tensor]) -> List[torch.Tensor]: |
|
if not isinstance(x, list): |
|
x = [x] |
|
assert len(x) in [1, 2] |
|
|
|
d1 = self.conv1(x[0]) |
|
d2 = self.conv3(self.conv2(d1)) |
|
d3 = self.conv5(self.conv4(d2)) |
|
if self.is_first: |
|
out = self.conv6(torch.cat([d1, d2, d3], 1)) |
|
return [out, out] |
|
else: |
|
return [self.conv6(torch.cat([d1, d2, d3, x[1]], 1)), x[1]] |
|
|
|
|
|
class SelecSLS(nn.Module): |
|
"""SelecSLS42 / SelecSLS60 / SelecSLS84 |
|
|
|
Parameters |
|
---------- |
|
cfg : network config dictionary specifying block type, feature, and head args |
|
num_classes : int, default 1000 |
|
Number of classification classes. |
|
in_chans : int, default 3 |
|
Number of input (color) channels. |
|
drop_rate : float, default 0. |
|
Dropout probability before classifier, for training |
|
global_pool : str, default 'avg' |
|
Global pooling type. One of 'avg', 'max', 'avgmax', 'catavgmax' |
|
""" |
|
|
|
def __init__(self, cfg, num_classes=1000, in_chans=3, drop_rate=0.0, global_pool='avg'): |
|
self.num_classes = num_classes |
|
self.drop_rate = drop_rate |
|
super(SelecSLS, self).__init__() |
|
|
|
self.stem = conv_bn(in_chans, 32, stride=2) |
|
self.features = SequentialList(*[cfg['block'](*block_args) for block_args in cfg['features']]) |
|
self.from_seq = SelectSeq() |
|
self.head = nn.Sequential(*[conv_bn(*conv_args) for conv_args in cfg['head']]) |
|
self.num_features = cfg['num_features'] |
|
self.feature_info = cfg['feature_info'] |
|
|
|
self.global_pool, self.fc = create_classifier(self.num_features, self.num_classes, pool_type=global_pool) |
|
|
|
for n, m in self.named_modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') |
|
elif isinstance(m, nn.BatchNorm2d): |
|
nn.init.constant_(m.weight, 1.) |
|
nn.init.constant_(m.bias, 0.) |
|
|
|
def get_classifier(self): |
|
return self.fc |
|
|
|
def reset_classifier(self, num_classes, global_pool='avg'): |
|
self.num_classes = num_classes |
|
self.global_pool, self.fc = create_classifier(self.num_features, self.num_classes, pool_type=global_pool) |
|
|
|
def forward_features(self, x): |
|
x = self.stem(x) |
|
x = self.features(x) |
|
x = self.head(self.from_seq(x)) |
|
return x |
|
|
|
def forward(self, x): |
|
x = self.forward_features(x) |
|
x = self.global_pool(x) |
|
if self.drop_rate > 0.: |
|
x = F.dropout(x, p=self.drop_rate, training=self.training) |
|
x = self.fc(x) |
|
return x |
|
|
|
|
|
def _create_selecsls(variant, pretrained, **kwargs): |
|
cfg = {} |
|
feature_info = [dict(num_chs=32, reduction=2, module='stem.2')] |
|
if variant.startswith('selecsls42'): |
|
cfg['block'] = SelecSLSBlock |
|
|
|
cfg['features'] = [ |
|
|
|
(32, 0, 64, 64, True, 2), |
|
(64, 64, 64, 128, False, 1), |
|
(128, 0, 144, 144, True, 2), |
|
(144, 144, 144, 288, False, 1), |
|
(288, 0, 304, 304, True, 2), |
|
(304, 304, 304, 480, False, 1), |
|
] |
|
feature_info.extend([ |
|
dict(num_chs=128, reduction=4, module='features.1'), |
|
dict(num_chs=288, reduction=8, module='features.3'), |
|
dict(num_chs=480, reduction=16, module='features.5'), |
|
]) |
|
|
|
feature_info.append(dict(num_chs=1024, reduction=32, module='head.1')) |
|
if variant == 'selecsls42b': |
|
cfg['head'] = [ |
|
(480, 960, 3, 2), |
|
(960, 1024, 3, 1), |
|
(1024, 1280, 3, 2), |
|
(1280, 1024, 1, 1), |
|
] |
|
feature_info.append(dict(num_chs=1024, reduction=64, module='head.3')) |
|
cfg['num_features'] = 1024 |
|
else: |
|
cfg['head'] = [ |
|
(480, 960, 3, 2), |
|
(960, 1024, 3, 1), |
|
(1024, 1024, 3, 2), |
|
(1024, 1280, 1, 1), |
|
] |
|
feature_info.append(dict(num_chs=1280, reduction=64, module='head.3')) |
|
cfg['num_features'] = 1280 |
|
|
|
elif variant.startswith('selecsls60'): |
|
cfg['block'] = SelecSLSBlock |
|
|
|
cfg['features'] = [ |
|
|
|
(32, 0, 64, 64, True, 2), |
|
(64, 64, 64, 128, False, 1), |
|
(128, 0, 128, 128, True, 2), |
|
(128, 128, 128, 128, False, 1), |
|
(128, 128, 128, 288, False, 1), |
|
(288, 0, 288, 288, True, 2), |
|
(288, 288, 288, 288, False, 1), |
|
(288, 288, 288, 288, False, 1), |
|
(288, 288, 288, 416, False, 1), |
|
] |
|
feature_info.extend([ |
|
dict(num_chs=128, reduction=4, module='features.1'), |
|
dict(num_chs=288, reduction=8, module='features.4'), |
|
dict(num_chs=416, reduction=16, module='features.8'), |
|
]) |
|
|
|
feature_info.append(dict(num_chs=1024, reduction=32, module='head.1')) |
|
if variant == 'selecsls60b': |
|
cfg['head'] = [ |
|
(416, 756, 3, 2), |
|
(756, 1024, 3, 1), |
|
(1024, 1280, 3, 2), |
|
(1280, 1024, 1, 1), |
|
] |
|
feature_info.append(dict(num_chs=1024, reduction=64, module='head.3')) |
|
cfg['num_features'] = 1024 |
|
else: |
|
cfg['head'] = [ |
|
(416, 756, 3, 2), |
|
(756, 1024, 3, 1), |
|
(1024, 1024, 3, 2), |
|
(1024, 1280, 1, 1), |
|
] |
|
feature_info.append(dict(num_chs=1280, reduction=64, module='head.3')) |
|
cfg['num_features'] = 1280 |
|
|
|
elif variant == 'selecsls84': |
|
cfg['block'] = SelecSLSBlock |
|
|
|
cfg['features'] = [ |
|
|
|
(32, 0, 64, 64, True, 2), |
|
(64, 64, 64, 144, False, 1), |
|
(144, 0, 144, 144, True, 2), |
|
(144, 144, 144, 144, False, 1), |
|
(144, 144, 144, 144, False, 1), |
|
(144, 144, 144, 144, False, 1), |
|
(144, 144, 144, 304, False, 1), |
|
(304, 0, 304, 304, True, 2), |
|
(304, 304, 304, 304, False, 1), |
|
(304, 304, 304, 304, False, 1), |
|
(304, 304, 304, 304, False, 1), |
|
(304, 304, 304, 304, False, 1), |
|
(304, 304, 304, 512, False, 1), |
|
] |
|
feature_info.extend([ |
|
dict(num_chs=144, reduction=4, module='features.1'), |
|
dict(num_chs=304, reduction=8, module='features.6'), |
|
dict(num_chs=512, reduction=16, module='features.12'), |
|
]) |
|
|
|
cfg['head'] = [ |
|
(512, 960, 3, 2), |
|
(960, 1024, 3, 1), |
|
(1024, 1024, 3, 2), |
|
(1024, 1280, 3, 1), |
|
] |
|
cfg['num_features'] = 1280 |
|
feature_info.extend([ |
|
dict(num_chs=1024, reduction=32, module='head.1'), |
|
dict(num_chs=1280, reduction=64, module='head.3') |
|
]) |
|
else: |
|
raise ValueError('Invalid net configuration ' + variant + ' !!!') |
|
cfg['feature_info'] = feature_info |
|
|
|
|
|
return build_model_with_cfg( |
|
SelecSLS, variant, pretrained, |
|
default_cfg=default_cfgs[variant], |
|
model_cfg=cfg, |
|
feature_cfg=dict(out_indices=(0, 1, 2, 3, 4), flatten_sequential=True), |
|
**kwargs) |
|
|
|
|
|
@register_model |
|
def selecsls42(pretrained=False, **kwargs): |
|
"""Constructs a SelecSLS42 model. |
|
""" |
|
return _create_selecsls('selecsls42', pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def selecsls42b(pretrained=False, **kwargs): |
|
"""Constructs a SelecSLS42_B model. |
|
""" |
|
return _create_selecsls('selecsls42b', pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def selecsls60(pretrained=False, **kwargs): |
|
"""Constructs a SelecSLS60 model. |
|
""" |
|
return _create_selecsls('selecsls60', pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def selecsls60b(pretrained=False, **kwargs): |
|
"""Constructs a SelecSLS60_B model. |
|
""" |
|
return _create_selecsls('selecsls60b', pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def selecsls84(pretrained=False, **kwargs): |
|
"""Constructs a SelecSLS84 model. |
|
""" |
|
return _create_selecsls('selecsls84', pretrained, **kwargs) |
|
|