|
""" ResNeSt Models |
|
|
|
Paper: `ResNeSt: Split-Attention Networks` - https://arxiv.org/abs/2004.08955 |
|
|
|
Adapted from original PyTorch impl w/ weights at https://github.com/zhanghang1989/ResNeSt by Hang Zhang |
|
|
|
Modified for torchscript compat, and consistency with timm by Ross Wightman |
|
""" |
|
import torch |
|
from torch import nn |
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD |
|
from .helpers import build_model_with_cfg |
|
from .layers import SplitAttn |
|
from .registry import register_model |
|
from .resnet import ResNet |
|
|
|
|
|
def _cfg(url='', **kwargs): |
|
return { |
|
'url': url, |
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), |
|
'crop_pct': 0.875, 'interpolation': 'bilinear', |
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, |
|
'first_conv': 'conv1.0', 'classifier': 'fc', |
|
**kwargs |
|
} |
|
|
|
default_cfgs = { |
|
'resnest14d': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gluon_resnest14-9c8fe254.pth'), |
|
'resnest26d': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gluon_resnest26-50eb607c.pth'), |
|
'resnest50d': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest50-528c19ca.pth'), |
|
'resnest101e': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest101-22405ba7.pth', |
|
input_size=(3, 256, 256), pool_size=(8, 8)), |
|
'resnest200e': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest200-75117900.pth', |
|
input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=0.909, interpolation='bicubic'), |
|
'resnest269e': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest269-0cc87c48.pth', |
|
input_size=(3, 416, 416), pool_size=(13, 13), crop_pct=0.928, interpolation='bicubic'), |
|
'resnest50d_4s2x40d': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest50_fast_4s2x40d-41d14ed0.pth', |
|
interpolation='bicubic'), |
|
'resnest50d_1s4x24d': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest50_fast_1s4x24d-d4a4f76f.pth', |
|
interpolation='bicubic') |
|
} |
|
|
|
|
|
class ResNestBottleneck(nn.Module): |
|
"""ResNet Bottleneck |
|
""" |
|
|
|
expansion = 4 |
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None, |
|
radix=1, cardinality=1, base_width=64, avd=False, avd_first=False, is_first=False, |
|
reduce_first=1, dilation=1, first_dilation=None, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, |
|
attn_layer=None, aa_layer=None, drop_block=None, drop_path=None): |
|
super(ResNestBottleneck, self).__init__() |
|
assert reduce_first == 1 |
|
assert attn_layer is None |
|
assert aa_layer is None |
|
assert drop_path is None |
|
|
|
group_width = int(planes * (base_width / 64.)) * cardinality |
|
first_dilation = first_dilation or dilation |
|
if avd and (stride > 1 or is_first): |
|
avd_stride = stride |
|
stride = 1 |
|
else: |
|
avd_stride = 0 |
|
self.radix = radix |
|
self.drop_block = drop_block |
|
|
|
self.conv1 = nn.Conv2d(inplanes, group_width, kernel_size=1, bias=False) |
|
self.bn1 = norm_layer(group_width) |
|
self.act1 = act_layer(inplace=True) |
|
self.avd_first = nn.AvgPool2d(3, avd_stride, padding=1) if avd_stride > 0 and avd_first else None |
|
|
|
if self.radix >= 1: |
|
self.conv2 = SplitAttn( |
|
group_width, group_width, kernel_size=3, stride=stride, padding=first_dilation, |
|
dilation=first_dilation, groups=cardinality, radix=radix, norm_layer=norm_layer, drop_block=drop_block) |
|
self.bn2 = nn.Identity() |
|
self.act2 = nn.Identity() |
|
else: |
|
self.conv2 = nn.Conv2d( |
|
group_width, group_width, kernel_size=3, stride=stride, padding=first_dilation, |
|
dilation=first_dilation, groups=cardinality, bias=False) |
|
self.bn2 = norm_layer(group_width) |
|
self.act2 = act_layer(inplace=True) |
|
self.avd_last = nn.AvgPool2d(3, avd_stride, padding=1) if avd_stride > 0 and not avd_first else None |
|
|
|
self.conv3 = nn.Conv2d(group_width, planes * 4, kernel_size=1, bias=False) |
|
self.bn3 = norm_layer(planes*4) |
|
self.act3 = act_layer(inplace=True) |
|
self.downsample = downsample |
|
|
|
def zero_init_last_bn(self): |
|
nn.init.zeros_(self.bn3.weight) |
|
|
|
def forward(self, x): |
|
shortcut = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
if self.drop_block is not None: |
|
out = self.drop_block(out) |
|
out = self.act1(out) |
|
|
|
if self.avd_first is not None: |
|
out = self.avd_first(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
if self.drop_block is not None: |
|
out = self.drop_block(out) |
|
out = self.act2(out) |
|
|
|
if self.avd_last is not None: |
|
out = self.avd_last(out) |
|
|
|
out = self.conv3(out) |
|
out = self.bn3(out) |
|
if self.drop_block is not None: |
|
out = self.drop_block(out) |
|
|
|
if self.downsample is not None: |
|
shortcut = self.downsample(x) |
|
|
|
out += shortcut |
|
out = self.act3(out) |
|
return out |
|
|
|
|
|
def _create_resnest(variant, pretrained=False, **kwargs): |
|
return build_model_with_cfg( |
|
ResNet, variant, pretrained, |
|
default_cfg=default_cfgs[variant], |
|
**kwargs) |
|
|
|
|
|
@register_model |
|
def resnest14d(pretrained=False, **kwargs): |
|
""" ResNeSt-14d model. Weights ported from GluonCV. |
|
""" |
|
model_kwargs = dict( |
|
block=ResNestBottleneck, layers=[1, 1, 1, 1], |
|
stem_type='deep', stem_width=32, avg_down=True, base_width=64, cardinality=1, |
|
block_args=dict(radix=2, avd=True, avd_first=False), **kwargs) |
|
return _create_resnest('resnest14d', pretrained=pretrained, **model_kwargs) |
|
|
|
|
|
@register_model |
|
def resnest26d(pretrained=False, **kwargs): |
|
""" ResNeSt-26d model. Weights ported from GluonCV. |
|
""" |
|
model_kwargs = dict( |
|
block=ResNestBottleneck, layers=[2, 2, 2, 2], |
|
stem_type='deep', stem_width=32, avg_down=True, base_width=64, cardinality=1, |
|
block_args=dict(radix=2, avd=True, avd_first=False), **kwargs) |
|
return _create_resnest('resnest26d', pretrained=pretrained, **model_kwargs) |
|
|
|
|
|
@register_model |
|
def resnest50d(pretrained=False, **kwargs): |
|
""" ResNeSt-50d model. Matches paper ResNeSt-50 model, https://arxiv.org/abs/2004.08955 |
|
Since this codebase supports all possible variations, 'd' for deep stem, stem_width 32, avg in downsample. |
|
""" |
|
model_kwargs = dict( |
|
block=ResNestBottleneck, layers=[3, 4, 6, 3], |
|
stem_type='deep', stem_width=32, avg_down=True, base_width=64, cardinality=1, |
|
block_args=dict(radix=2, avd=True, avd_first=False), **kwargs) |
|
return _create_resnest('resnest50d', pretrained=pretrained, **model_kwargs) |
|
|
|
|
|
@register_model |
|
def resnest101e(pretrained=False, **kwargs): |
|
""" ResNeSt-101e model. Matches paper ResNeSt-101 model, https://arxiv.org/abs/2004.08955 |
|
Since this codebase supports all possible variations, 'e' for deep stem, stem_width 64, avg in downsample. |
|
""" |
|
model_kwargs = dict( |
|
block=ResNestBottleneck, layers=[3, 4, 23, 3], |
|
stem_type='deep', stem_width=64, avg_down=True, base_width=64, cardinality=1, |
|
block_args=dict(radix=2, avd=True, avd_first=False), **kwargs) |
|
return _create_resnest('resnest101e', pretrained=pretrained, **model_kwargs) |
|
|
|
|
|
@register_model |
|
def resnest200e(pretrained=False, **kwargs): |
|
""" ResNeSt-200e model. Matches paper ResNeSt-200 model, https://arxiv.org/abs/2004.08955 |
|
Since this codebase supports all possible variations, 'e' for deep stem, stem_width 64, avg in downsample. |
|
""" |
|
model_kwargs = dict( |
|
block=ResNestBottleneck, layers=[3, 24, 36, 3], |
|
stem_type='deep', stem_width=64, avg_down=True, base_width=64, cardinality=1, |
|
block_args=dict(radix=2, avd=True, avd_first=False), **kwargs) |
|
return _create_resnest('resnest200e', pretrained=pretrained, **model_kwargs) |
|
|
|
|
|
@register_model |
|
def resnest269e(pretrained=False, **kwargs): |
|
""" ResNeSt-269e model. Matches paper ResNeSt-269 model, https://arxiv.org/abs/2004.08955 |
|
Since this codebase supports all possible variations, 'e' for deep stem, stem_width 64, avg in downsample. |
|
""" |
|
model_kwargs = dict( |
|
block=ResNestBottleneck, layers=[3, 30, 48, 8], |
|
stem_type='deep', stem_width=64, avg_down=True, base_width=64, cardinality=1, |
|
block_args=dict(radix=2, avd=True, avd_first=False), **kwargs) |
|
return _create_resnest('resnest269e', pretrained=pretrained, **model_kwargs) |
|
|
|
|
|
@register_model |
|
def resnest50d_4s2x40d(pretrained=False, **kwargs): |
|
"""ResNeSt-50 4s2x40d from https://github.com/zhanghang1989/ResNeSt/blob/master/ablation.md |
|
""" |
|
model_kwargs = dict( |
|
block=ResNestBottleneck, layers=[3, 4, 6, 3], |
|
stem_type='deep', stem_width=32, avg_down=True, base_width=40, cardinality=2, |
|
block_args=dict(radix=4, avd=True, avd_first=True), **kwargs) |
|
return _create_resnest('resnest50d_4s2x40d', pretrained=pretrained, **model_kwargs) |
|
|
|
|
|
@register_model |
|
def resnest50d_1s4x24d(pretrained=False, **kwargs): |
|
"""ResNeSt-50 1s4x24d from https://github.com/zhanghang1989/ResNeSt/blob/master/ablation.md |
|
""" |
|
model_kwargs = dict( |
|
block=ResNestBottleneck, layers=[3, 4, 6, 3], |
|
stem_type='deep', stem_width=32, avg_down=True, base_width=24, cardinality=4, |
|
block_args=dict(radix=1, avd=True, avd_first=True), **kwargs) |
|
return _create_resnest('resnest50d_1s4x24d', pretrained=pretrained, **model_kwargs) |
|
|