|
"""RegNet |
|
|
|
Paper: `Designing Network Design Spaces` - https://arxiv.org/abs/2003.13678 |
|
Original Impl: https://github.com/facebookresearch/pycls/blob/master/pycls/models/regnet.py |
|
|
|
Based on original PyTorch impl linked above, but re-wrote to use my own blocks (adapted from ResNet here) |
|
and cleaned up with more descriptive variable names. |
|
|
|
Weights from original impl have been modified |
|
* first layer from BGR -> RGB as most PyTorch models are |
|
* removed training specific dict entries from checkpoints and keep model state_dict only |
|
* remap names to match the ones here |
|
|
|
Hacked together by / Copyright 2020 Ross Wightman |
|
""" |
|
import numpy as np |
|
import torch.nn as nn |
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD |
|
from .helpers import build_model_with_cfg |
|
from .layers import ClassifierHead, AvgPool2dSame, ConvBnAct, SEModule, DropPath |
|
from .registry import register_model |
|
|
|
|
|
def _mcfg(**kwargs): |
|
cfg = dict(se_ratio=0., bottle_ratio=1., stem_width=32) |
|
cfg.update(**kwargs) |
|
return cfg |
|
|
|
|
|
|
|
model_cfgs = dict( |
|
regnetx_002=_mcfg(w0=24, wa=36.44, wm=2.49, group_w=8, depth=13), |
|
regnetx_004=_mcfg(w0=24, wa=24.48, wm=2.54, group_w=16, depth=22), |
|
regnetx_006=_mcfg(w0=48, wa=36.97, wm=2.24, group_w=24, depth=16), |
|
regnetx_008=_mcfg(w0=56, wa=35.73, wm=2.28, group_w=16, depth=16), |
|
regnetx_016=_mcfg(w0=80, wa=34.01, wm=2.25, group_w=24, depth=18), |
|
regnetx_032=_mcfg(w0=88, wa=26.31, wm=2.25, group_w=48, depth=25), |
|
regnetx_040=_mcfg(w0=96, wa=38.65, wm=2.43, group_w=40, depth=23), |
|
regnetx_064=_mcfg(w0=184, wa=60.83, wm=2.07, group_w=56, depth=17), |
|
regnetx_080=_mcfg(w0=80, wa=49.56, wm=2.88, group_w=120, depth=23), |
|
regnetx_120=_mcfg(w0=168, wa=73.36, wm=2.37, group_w=112, depth=19), |
|
regnetx_160=_mcfg(w0=216, wa=55.59, wm=2.1, group_w=128, depth=22), |
|
regnetx_320=_mcfg(w0=320, wa=69.86, wm=2.0, group_w=168, depth=23), |
|
regnety_002=_mcfg(w0=24, wa=36.44, wm=2.49, group_w=8, depth=13, se_ratio=0.25), |
|
regnety_004=_mcfg(w0=48, wa=27.89, wm=2.09, group_w=8, depth=16, se_ratio=0.25), |
|
regnety_006=_mcfg(w0=48, wa=32.54, wm=2.32, group_w=16, depth=15, se_ratio=0.25), |
|
regnety_008=_mcfg(w0=56, wa=38.84, wm=2.4, group_w=16, depth=14, se_ratio=0.25), |
|
regnety_016=_mcfg(w0=48, wa=20.71, wm=2.65, group_w=24, depth=27, se_ratio=0.25), |
|
regnety_032=_mcfg(w0=80, wa=42.63, wm=2.66, group_w=24, depth=21, se_ratio=0.25), |
|
regnety_040=_mcfg(w0=96, wa=31.41, wm=2.24, group_w=64, depth=22, se_ratio=0.25), |
|
regnety_064=_mcfg(w0=112, wa=33.22, wm=2.27, group_w=72, depth=25, se_ratio=0.25), |
|
regnety_080=_mcfg(w0=192, wa=76.82, wm=2.19, group_w=56, depth=17, se_ratio=0.25), |
|
regnety_120=_mcfg(w0=168, wa=73.36, wm=2.37, group_w=112, depth=19, se_ratio=0.25), |
|
regnety_160=_mcfg(w0=200, wa=106.23, wm=2.48, group_w=112, depth=18, se_ratio=0.25), |
|
regnety_320=_mcfg(w0=232, wa=115.89, wm=2.53, group_w=232, depth=20, se_ratio=0.25), |
|
) |
|
|
|
|
|
def _cfg(url='', **kwargs): |
|
return { |
|
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), |
|
'crop_pct': 0.875, 'interpolation': 'bicubic', |
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, |
|
'first_conv': 'stem.conv', 'classifier': 'head.fc', |
|
**kwargs |
|
} |
|
|
|
|
|
default_cfgs = dict( |
|
regnetx_002=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_002-e7e85e5c.pth'), |
|
regnetx_004=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_004-7d0e9424.pth'), |
|
regnetx_006=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_006-85ec1baa.pth'), |
|
regnetx_008=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_008-d8b470eb.pth'), |
|
regnetx_016=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_016-65ca972a.pth'), |
|
regnetx_032=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_032-ed0c7f7e.pth'), |
|
regnetx_040=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_040-73c2a654.pth'), |
|
regnetx_064=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_064-29278baa.pth'), |
|
regnetx_080=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_080-7c7fcab1.pth'), |
|
regnetx_120=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_120-65d5521e.pth'), |
|
regnetx_160=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_160-c98c4112.pth'), |
|
regnetx_320=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_320-8ea38b93.pth'), |
|
regnety_002=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_002-e68ca334.pth'), |
|
regnety_004=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_004-0db870e6.pth'), |
|
regnety_006=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_006-c67e57ec.pth'), |
|
regnety_008=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_008-dc900dbe.pth'), |
|
regnety_016=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_016-54367f74.pth'), |
|
regnety_032=_cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/regnety_032_ra-7f2439f9.pth', |
|
crop_pct=1.0, test_input_size=(3, 288, 288)), |
|
regnety_040=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_040-f0d569f9.pth'), |
|
regnety_064=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_064-0a48325c.pth'), |
|
regnety_080=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_080-e7f3eb93.pth'), |
|
regnety_120=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_120-721ba79a.pth'), |
|
regnety_160=_cfg( |
|
url='https://dl.fbaipublicfiles.com/deit/regnety_160-a5fe301d.pth', |
|
crop_pct=1.0, test_input_size=(3, 288, 288)), |
|
regnety_320=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_320-ba464b29.pth'), |
|
) |
|
|
|
|
|
def quantize_float(f, q): |
|
"""Converts a float to closest non-zero int divisible by q.""" |
|
return int(round(f / q) * q) |
|
|
|
|
|
def adjust_widths_groups_comp(widths, bottle_ratios, groups): |
|
"""Adjusts the compatibility of widths and groups.""" |
|
bottleneck_widths = [int(w * b) for w, b in zip(widths, bottle_ratios)] |
|
groups = [min(g, w_bot) for g, w_bot in zip(groups, bottleneck_widths)] |
|
bottleneck_widths = [quantize_float(w_bot, g) for w_bot, g in zip(bottleneck_widths, groups)] |
|
widths = [int(w_bot / b) for w_bot, b in zip(bottleneck_widths, bottle_ratios)] |
|
return widths, groups |
|
|
|
|
|
def generate_regnet(width_slope, width_initial, width_mult, depth, q=8): |
|
"""Generates per block widths from RegNet parameters.""" |
|
assert width_slope >= 0 and width_initial > 0 and width_mult > 1 and width_initial % q == 0 |
|
widths_cont = np.arange(depth) * width_slope + width_initial |
|
width_exps = np.round(np.log(widths_cont / width_initial) / np.log(width_mult)) |
|
widths = width_initial * np.power(width_mult, width_exps) |
|
widths = np.round(np.divide(widths, q)) * q |
|
num_stages, max_stage = len(np.unique(widths)), width_exps.max() + 1 |
|
widths, widths_cont = widths.astype(int).tolist(), widths_cont.tolist() |
|
return widths, num_stages, max_stage, widths_cont |
|
|
|
|
|
class Bottleneck(nn.Module): |
|
""" RegNet Bottleneck |
|
|
|
This is almost exactly the same as a ResNet Bottlneck. The main difference is the SE block is moved from |
|
after conv3 to after conv2. Otherwise, it's just redefining the arguments for groups/bottleneck channels. |
|
""" |
|
|
|
def __init__(self, in_chs, out_chs, stride=1, dilation=1, bottleneck_ratio=1, group_width=1, se_ratio=0.25, |
|
downsample=None, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, aa_layer=None, |
|
drop_block=None, drop_path=None): |
|
super(Bottleneck, self).__init__() |
|
bottleneck_chs = int(round(out_chs * bottleneck_ratio)) |
|
groups = bottleneck_chs // group_width |
|
|
|
cargs = dict(act_layer=act_layer, norm_layer=norm_layer, aa_layer=aa_layer, drop_block=drop_block) |
|
self.conv1 = ConvBnAct(in_chs, bottleneck_chs, kernel_size=1, **cargs) |
|
self.conv2 = ConvBnAct( |
|
bottleneck_chs, bottleneck_chs, kernel_size=3, stride=stride, dilation=dilation, |
|
groups=groups, **cargs) |
|
if se_ratio: |
|
se_channels = int(round(in_chs * se_ratio)) |
|
self.se = SEModule(bottleneck_chs, rd_channels=se_channels) |
|
else: |
|
self.se = None |
|
cargs['act_layer'] = None |
|
self.conv3 = ConvBnAct(bottleneck_chs, out_chs, kernel_size=1, **cargs) |
|
self.act3 = act_layer(inplace=True) |
|
self.downsample = downsample |
|
self.drop_path = drop_path |
|
|
|
def zero_init_last_bn(self): |
|
nn.init.zeros_(self.conv3.bn.weight) |
|
|
|
def forward(self, x): |
|
shortcut = x |
|
x = self.conv1(x) |
|
x = self.conv2(x) |
|
if self.se is not None: |
|
x = self.se(x) |
|
x = self.conv3(x) |
|
if self.drop_path is not None: |
|
x = self.drop_path(x) |
|
if self.downsample is not None: |
|
shortcut = self.downsample(shortcut) |
|
x += shortcut |
|
x = self.act3(x) |
|
return x |
|
|
|
|
|
def downsample_conv( |
|
in_chs, out_chs, kernel_size, stride=1, dilation=1, norm_layer=None): |
|
norm_layer = norm_layer or nn.BatchNorm2d |
|
kernel_size = 1 if stride == 1 and dilation == 1 else kernel_size |
|
dilation = dilation if kernel_size > 1 else 1 |
|
return ConvBnAct( |
|
in_chs, out_chs, kernel_size, stride=stride, dilation=dilation, norm_layer=norm_layer, act_layer=None) |
|
|
|
|
|
def downsample_avg( |
|
in_chs, out_chs, kernel_size, stride=1, dilation=1, norm_layer=None): |
|
""" AvgPool Downsampling as in 'D' ResNet variants. This is not in RegNet space but I might experiment.""" |
|
norm_layer = norm_layer or nn.BatchNorm2d |
|
avg_stride = stride if dilation == 1 else 1 |
|
pool = nn.Identity() |
|
if stride > 1 or dilation > 1: |
|
avg_pool_fn = AvgPool2dSame if avg_stride == 1 and dilation > 1 else nn.AvgPool2d |
|
pool = avg_pool_fn(2, avg_stride, ceil_mode=True, count_include_pad=False) |
|
return nn.Sequential(*[ |
|
pool, ConvBnAct(in_chs, out_chs, 1, stride=1, norm_layer=norm_layer, act_layer=None)]) |
|
|
|
|
|
class RegStage(nn.Module): |
|
"""Stage (sequence of blocks w/ the same output shape).""" |
|
|
|
def __init__(self, in_chs, out_chs, stride, dilation, depth, bottle_ratio, group_width, |
|
block_fn=Bottleneck, se_ratio=0., drop_path_rates=None, drop_block=None): |
|
super(RegStage, self).__init__() |
|
block_kwargs = {} |
|
first_dilation = 1 if dilation in (1, 2) else 2 |
|
for i in range(depth): |
|
block_stride = stride if i == 0 else 1 |
|
block_in_chs = in_chs if i == 0 else out_chs |
|
block_dilation = first_dilation if i == 0 else dilation |
|
if drop_path_rates is not None and drop_path_rates[i] > 0.: |
|
drop_path = DropPath(drop_path_rates[i]) |
|
else: |
|
drop_path = None |
|
if (block_in_chs != out_chs) or (block_stride != 1): |
|
proj_block = downsample_conv(block_in_chs, out_chs, 1, block_stride, block_dilation) |
|
else: |
|
proj_block = None |
|
|
|
name = "b{}".format(i + 1) |
|
self.add_module( |
|
name, block_fn( |
|
block_in_chs, out_chs, block_stride, block_dilation, bottle_ratio, group_width, se_ratio, |
|
downsample=proj_block, drop_block=drop_block, drop_path=drop_path, **block_kwargs) |
|
) |
|
|
|
def forward(self, x): |
|
for block in self.children(): |
|
x = block(x) |
|
return x |
|
|
|
|
|
class RegNet(nn.Module): |
|
"""RegNet model. |
|
|
|
Paper: https://arxiv.org/abs/2003.13678 |
|
Original Impl: https://github.com/facebookresearch/pycls/blob/master/pycls/models/regnet.py |
|
""" |
|
|
|
def __init__(self, cfg, in_chans=3, num_classes=1000, output_stride=32, global_pool='avg', drop_rate=0., |
|
drop_path_rate=0., zero_init_last_bn=True): |
|
super().__init__() |
|
|
|
self.num_classes = num_classes |
|
self.drop_rate = drop_rate |
|
assert output_stride in (8, 16, 32) |
|
|
|
|
|
stem_width = cfg['stem_width'] |
|
self.stem = ConvBnAct(in_chans, stem_width, 3, stride=2) |
|
self.feature_info = [dict(num_chs=stem_width, reduction=2, module='stem')] |
|
|
|
|
|
prev_width = stem_width |
|
curr_stride = 2 |
|
stage_params = self._get_stage_params(cfg, output_stride=output_stride, drop_path_rate=drop_path_rate) |
|
se_ratio = cfg['se_ratio'] |
|
for i, stage_args in enumerate(stage_params): |
|
stage_name = "s{}".format(i + 1) |
|
self.add_module(stage_name, RegStage(prev_width, **stage_args, se_ratio=se_ratio)) |
|
prev_width = stage_args['out_chs'] |
|
curr_stride *= stage_args['stride'] |
|
self.feature_info += [dict(num_chs=prev_width, reduction=curr_stride, module=stage_name)] |
|
|
|
|
|
self.num_features = prev_width |
|
self.head = ClassifierHead( |
|
in_chs=prev_width, num_classes=num_classes, pool_type=global_pool, drop_rate=drop_rate) |
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') |
|
elif isinstance(m, nn.BatchNorm2d): |
|
nn.init.ones_(m.weight) |
|
nn.init.zeros_(m.bias) |
|
elif isinstance(m, nn.Linear): |
|
nn.init.normal_(m.weight, mean=0.0, std=0.01) |
|
nn.init.zeros_(m.bias) |
|
if zero_init_last_bn: |
|
for m in self.modules(): |
|
if hasattr(m, 'zero_init_last_bn'): |
|
m.zero_init_last_bn() |
|
|
|
def _get_stage_params(self, cfg, default_stride=2, output_stride=32, drop_path_rate=0.): |
|
|
|
w_a, w_0, w_m, d = cfg['wa'], cfg['w0'], cfg['wm'], cfg['depth'] |
|
widths, num_stages, _, _ = generate_regnet(w_a, w_0, w_m, d) |
|
|
|
|
|
stage_widths, stage_depths = np.unique(widths, return_counts=True) |
|
|
|
|
|
stage_groups = [cfg['group_w'] for _ in range(num_stages)] |
|
stage_bottle_ratios = [cfg['bottle_ratio'] for _ in range(num_stages)] |
|
stage_strides = [] |
|
stage_dilations = [] |
|
net_stride = 2 |
|
dilation = 1 |
|
for _ in range(num_stages): |
|
if net_stride >= output_stride: |
|
dilation *= default_stride |
|
stride = 1 |
|
else: |
|
stride = default_stride |
|
net_stride *= stride |
|
stage_strides.append(stride) |
|
stage_dilations.append(dilation) |
|
stage_dpr = np.split(np.linspace(0, drop_path_rate, d), np.cumsum(stage_depths[:-1])) |
|
|
|
|
|
stage_widths, stage_groups = adjust_widths_groups_comp(stage_widths, stage_bottle_ratios, stage_groups) |
|
param_names = ['out_chs', 'stride', 'dilation', 'depth', 'bottle_ratio', 'group_width', 'drop_path_rates'] |
|
stage_params = [ |
|
dict(zip(param_names, params)) for params in |
|
zip(stage_widths, stage_strides, stage_dilations, stage_depths, stage_bottle_ratios, stage_groups, |
|
stage_dpr)] |
|
return stage_params |
|
|
|
def get_classifier(self): |
|
return self.head.fc |
|
|
|
def reset_classifier(self, num_classes, global_pool='avg'): |
|
self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate) |
|
|
|
def forward_features(self, x): |
|
for block in list(self.children())[:-1]: |
|
x = block(x) |
|
return x |
|
|
|
def forward(self, x): |
|
for block in self.children(): |
|
x = block(x) |
|
return x |
|
|
|
|
|
def _filter_fn(state_dict): |
|
""" convert patch embedding weight from manual patchify + linear proj to conv""" |
|
if 'model' in state_dict: |
|
|
|
state_dict = state_dict['model'] |
|
return state_dict |
|
|
|
|
|
def _create_regnet(variant, pretrained, **kwargs): |
|
return build_model_with_cfg( |
|
RegNet, variant, pretrained, |
|
default_cfg=default_cfgs[variant], |
|
model_cfg=model_cfgs[variant], |
|
pretrained_filter_fn=_filter_fn, |
|
**kwargs) |
|
|
|
|
|
@register_model |
|
def regnetx_002(pretrained=False, **kwargs): |
|
"""RegNetX-200MF""" |
|
return _create_regnet('regnetx_002', pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def regnetx_004(pretrained=False, **kwargs): |
|
"""RegNetX-400MF""" |
|
return _create_regnet('regnetx_004', pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def regnetx_006(pretrained=False, **kwargs): |
|
"""RegNetX-600MF""" |
|
return _create_regnet('regnetx_006', pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def regnetx_008(pretrained=False, **kwargs): |
|
"""RegNetX-800MF""" |
|
return _create_regnet('regnetx_008', pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def regnetx_016(pretrained=False, **kwargs): |
|
"""RegNetX-1.6GF""" |
|
return _create_regnet('regnetx_016', pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def regnetx_032(pretrained=False, **kwargs): |
|
"""RegNetX-3.2GF""" |
|
return _create_regnet('regnetx_032', pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def regnetx_040(pretrained=False, **kwargs): |
|
"""RegNetX-4.0GF""" |
|
return _create_regnet('regnetx_040', pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def regnetx_064(pretrained=False, **kwargs): |
|
"""RegNetX-6.4GF""" |
|
return _create_regnet('regnetx_064', pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def regnetx_080(pretrained=False, **kwargs): |
|
"""RegNetX-8.0GF""" |
|
return _create_regnet('regnetx_080', pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def regnetx_120(pretrained=False, **kwargs): |
|
"""RegNetX-12GF""" |
|
return _create_regnet('regnetx_120', pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def regnetx_160(pretrained=False, **kwargs): |
|
"""RegNetX-16GF""" |
|
return _create_regnet('regnetx_160', pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def regnetx_320(pretrained=False, **kwargs): |
|
"""RegNetX-32GF""" |
|
return _create_regnet('regnetx_320', pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def regnety_002(pretrained=False, **kwargs): |
|
"""RegNetY-200MF""" |
|
return _create_regnet('regnety_002', pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def regnety_004(pretrained=False, **kwargs): |
|
"""RegNetY-400MF""" |
|
return _create_regnet('regnety_004', pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def regnety_006(pretrained=False, **kwargs): |
|
"""RegNetY-600MF""" |
|
return _create_regnet('regnety_006', pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def regnety_008(pretrained=False, **kwargs): |
|
"""RegNetY-800MF""" |
|
return _create_regnet('regnety_008', pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def regnety_016(pretrained=False, **kwargs): |
|
"""RegNetY-1.6GF""" |
|
return _create_regnet('regnety_016', pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def regnety_032(pretrained=False, **kwargs): |
|
"""RegNetY-3.2GF""" |
|
return _create_regnet('regnety_032', pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def regnety_040(pretrained=False, **kwargs): |
|
"""RegNetY-4.0GF""" |
|
return _create_regnet('regnety_040', pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def regnety_064(pretrained=False, **kwargs): |
|
"""RegNetY-6.4GF""" |
|
return _create_regnet('regnety_064', pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def regnety_080(pretrained=False, **kwargs): |
|
"""RegNetY-8.0GF""" |
|
return _create_regnet('regnety_080', pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def regnety_120(pretrained=False, **kwargs): |
|
"""RegNetY-12GF""" |
|
return _create_regnet('regnety_120', pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def regnety_160(pretrained=False, **kwargs): |
|
"""RegNetY-16GF""" |
|
return _create_regnet('regnety_160', pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def regnety_320(pretrained=False, **kwargs): |
|
"""RegNetY-32GF""" |
|
return _create_regnet('regnety_320', pretrained, **kwargs) |
|
|