|
""" Pooling-based Vision Transformer (PiT) in PyTorch |
|
|
|
A PyTorch implement of Pooling-based Vision Transformers as described in |
|
'Rethinking Spatial Dimensions of Vision Transformers' - https://arxiv.org/abs/2103.16302 |
|
|
|
This code was adapted from the original version at https://github.com/naver-ai/pit, original copyright below. |
|
|
|
Modifications for timm by / Copyright 2020 Ross Wightman |
|
""" |
|
|
|
|
|
|
|
|
|
import math |
|
import re |
|
from copy import deepcopy |
|
from functools import partial |
|
from typing import Tuple |
|
|
|
import torch |
|
from torch import nn |
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD |
|
from .helpers import build_model_with_cfg, overlay_external_default_cfg |
|
from .layers import trunc_normal_, to_2tuple |
|
from .registry import register_model |
|
from .vision_transformer import Block |
|
|
|
|
|
def _cfg(url='', **kwargs): |
|
return { |
|
'url': url, |
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, |
|
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, |
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, |
|
'first_conv': 'patch_embed.conv', 'classifier': 'head', |
|
**kwargs |
|
} |
|
|
|
|
|
default_cfgs = { |
|
|
|
'pit_ti_224': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-pit-weights/pit_ti_730.pth'), |
|
'pit_xs_224': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-pit-weights/pit_xs_781.pth'), |
|
'pit_s_224': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-pit-weights/pit_s_809.pth'), |
|
'pit_b_224': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-pit-weights/pit_b_820.pth'), |
|
'pit_ti_distilled_224': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-pit-weights/pit_ti_distill_746.pth', |
|
classifier=('head', 'head_dist')), |
|
'pit_xs_distilled_224': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-pit-weights/pit_xs_distill_791.pth', |
|
classifier=('head', 'head_dist')), |
|
'pit_s_distilled_224': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-pit-weights/pit_s_distill_819.pth', |
|
classifier=('head', 'head_dist')), |
|
'pit_b_distilled_224': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-pit-weights/pit_b_distill_840.pth', |
|
classifier=('head', 'head_dist')), |
|
} |
|
|
|
|
|
class SequentialTuple(nn.Sequential): |
|
""" This module exists to work around torchscript typing issues list -> list""" |
|
def __init__(self, *args): |
|
super(SequentialTuple, self).__init__(*args) |
|
|
|
def forward(self, x: Tuple[torch.Tensor, torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor]: |
|
for module in self: |
|
x = module(x) |
|
return x |
|
|
|
|
|
class Transformer(nn.Module): |
|
def __init__( |
|
self, base_dim, depth, heads, mlp_ratio, pool=None, drop_rate=.0, attn_drop_rate=.0, drop_path_prob=None): |
|
super(Transformer, self).__init__() |
|
self.layers = nn.ModuleList([]) |
|
embed_dim = base_dim * heads |
|
|
|
self.blocks = nn.Sequential(*[ |
|
Block( |
|
dim=embed_dim, |
|
num_heads=heads, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=True, |
|
drop=drop_rate, |
|
attn_drop=attn_drop_rate, |
|
drop_path=drop_path_prob[i], |
|
norm_layer=partial(nn.LayerNorm, eps=1e-6) |
|
) |
|
for i in range(depth)]) |
|
|
|
self.pool = pool |
|
|
|
def forward(self, x: Tuple[torch.Tensor, torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor]: |
|
x, cls_tokens = x |
|
B, C, H, W = x.shape |
|
token_length = cls_tokens.shape[1] |
|
|
|
x = x.flatten(2).transpose(1, 2) |
|
x = torch.cat((cls_tokens, x), dim=1) |
|
|
|
x = self.blocks(x) |
|
|
|
cls_tokens = x[:, :token_length] |
|
x = x[:, token_length:] |
|
x = x.transpose(1, 2).reshape(B, C, H, W) |
|
|
|
if self.pool is not None: |
|
x, cls_tokens = self.pool(x, cls_tokens) |
|
return x, cls_tokens |
|
|
|
|
|
class ConvHeadPooling(nn.Module): |
|
def __init__(self, in_feature, out_feature, stride, padding_mode='zeros'): |
|
super(ConvHeadPooling, self).__init__() |
|
|
|
self.conv = nn.Conv2d( |
|
in_feature, out_feature, kernel_size=stride + 1, padding=stride // 2, stride=stride, |
|
padding_mode=padding_mode, groups=in_feature) |
|
self.fc = nn.Linear(in_feature, out_feature) |
|
|
|
def forward(self, x, cls_token) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
|
x = self.conv(x) |
|
cls_token = self.fc(cls_token) |
|
|
|
return x, cls_token |
|
|
|
|
|
class ConvEmbedding(nn.Module): |
|
def __init__(self, in_channels, out_channels, patch_size, stride, padding): |
|
super(ConvEmbedding, self).__init__() |
|
self.conv = nn.Conv2d( |
|
in_channels, out_channels, kernel_size=patch_size, stride=stride, padding=padding, bias=True) |
|
|
|
def forward(self, x): |
|
x = self.conv(x) |
|
return x |
|
|
|
|
|
class PoolingVisionTransformer(nn.Module): |
|
""" Pooling-based Vision Transformer |
|
|
|
A PyTorch implement of 'Rethinking Spatial Dimensions of Vision Transformers' |
|
- https://arxiv.org/abs/2103.16302 |
|
""" |
|
def __init__(self, img_size, patch_size, stride, base_dims, depth, heads, |
|
mlp_ratio, num_classes=1000, in_chans=3, distilled=False, |
|
attn_drop_rate=.0, drop_rate=.0, drop_path_rate=.0): |
|
super(PoolingVisionTransformer, self).__init__() |
|
|
|
padding = 0 |
|
img_size = to_2tuple(img_size) |
|
patch_size = to_2tuple(patch_size) |
|
height = math.floor((img_size[0] + 2 * padding - patch_size[0]) / stride + 1) |
|
width = math.floor((img_size[1] + 2 * padding - patch_size[1]) / stride + 1) |
|
|
|
self.base_dims = base_dims |
|
self.heads = heads |
|
self.num_classes = num_classes |
|
self.num_tokens = 2 if distilled else 1 |
|
|
|
self.patch_size = patch_size |
|
self.pos_embed = nn.Parameter(torch.randn(1, base_dims[0] * heads[0], height, width)) |
|
self.patch_embed = ConvEmbedding(in_chans, base_dims[0] * heads[0], patch_size, stride, padding) |
|
|
|
self.cls_token = nn.Parameter(torch.randn(1, self.num_tokens, base_dims[0] * heads[0])) |
|
self.pos_drop = nn.Dropout(p=drop_rate) |
|
|
|
transformers = [] |
|
|
|
dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depth)).split(depth)] |
|
for stage in range(len(depth)): |
|
pool = None |
|
if stage < len(heads) - 1: |
|
pool = ConvHeadPooling( |
|
base_dims[stage] * heads[stage], base_dims[stage + 1] * heads[stage + 1], stride=2) |
|
transformers += [Transformer( |
|
base_dims[stage], depth[stage], heads[stage], mlp_ratio, pool=pool, |
|
drop_rate=drop_rate, attn_drop_rate=attn_drop_rate, drop_path_prob=dpr[stage]) |
|
] |
|
self.transformers = SequentialTuple(*transformers) |
|
self.norm = nn.LayerNorm(base_dims[-1] * heads[-1], eps=1e-6) |
|
self.num_features = self.embed_dim = base_dims[-1] * heads[-1] |
|
|
|
|
|
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() |
|
self.head_dist = None |
|
if distilled: |
|
self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if num_classes > 0 else nn.Identity() |
|
|
|
trunc_normal_(self.pos_embed, std=.02) |
|
trunc_normal_(self.cls_token, std=.02) |
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay(self): |
|
return {'pos_embed', 'cls_token'} |
|
|
|
def get_classifier(self): |
|
if self.head_dist is not None: |
|
return self.head, self.head_dist |
|
else: |
|
return self.head |
|
|
|
def reset_classifier(self, num_classes, global_pool=''): |
|
self.num_classes = num_classes |
|
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() |
|
if self.head_dist is not None: |
|
self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if num_classes > 0 else nn.Identity() |
|
|
|
def forward_features(self, x): |
|
x = self.patch_embed(x) |
|
x = self.pos_drop(x + self.pos_embed) |
|
cls_tokens = self.cls_token.expand(x.shape[0], -1, -1) |
|
x, cls_tokens = self.transformers((x, cls_tokens)) |
|
cls_tokens = self.norm(cls_tokens) |
|
if self.head_dist is not None: |
|
return cls_tokens[:, 0], cls_tokens[:, 1] |
|
else: |
|
return cls_tokens[:, 0] |
|
|
|
def forward(self, x): |
|
x = self.forward_features(x) |
|
if self.head_dist is not None: |
|
x, x_dist = self.head(x[0]), self.head_dist(x[1]) |
|
if self.training and not torch.jit.is_scripting(): |
|
return x, x_dist |
|
else: |
|
return (x + x_dist) / 2 |
|
else: |
|
return self.head(x) |
|
|
|
|
|
def checkpoint_filter_fn(state_dict, model): |
|
""" preprocess checkpoints """ |
|
out_dict = {} |
|
p_blocks = re.compile(r'pools\.(\d)\.') |
|
for k, v in state_dict.items(): |
|
|
|
|
|
|
|
|
|
k = p_blocks.sub(lambda exp: f'transformers.{int(exp.group(1))}.pool.', k) |
|
out_dict[k] = v |
|
return out_dict |
|
|
|
|
|
def _create_pit(variant, pretrained=False, **kwargs): |
|
if kwargs.get('features_only', None): |
|
raise RuntimeError('features_only not implemented for Vision Transformer models.') |
|
|
|
model = build_model_with_cfg( |
|
PoolingVisionTransformer, variant, pretrained, |
|
default_cfg=default_cfgs[variant], |
|
pretrained_filter_fn=checkpoint_filter_fn, |
|
**kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def pit_b_224(pretrained, **kwargs): |
|
model_kwargs = dict( |
|
patch_size=14, |
|
stride=7, |
|
base_dims=[64, 64, 64], |
|
depth=[3, 6, 4], |
|
heads=[4, 8, 16], |
|
mlp_ratio=4, |
|
**kwargs |
|
) |
|
return _create_pit('pit_b_224', pretrained, **model_kwargs) |
|
|
|
|
|
@register_model |
|
def pit_s_224(pretrained, **kwargs): |
|
model_kwargs = dict( |
|
patch_size=16, |
|
stride=8, |
|
base_dims=[48, 48, 48], |
|
depth=[2, 6, 4], |
|
heads=[3, 6, 12], |
|
mlp_ratio=4, |
|
**kwargs |
|
) |
|
return _create_pit('pit_s_224', pretrained, **model_kwargs) |
|
|
|
|
|
@register_model |
|
def pit_xs_224(pretrained, **kwargs): |
|
model_kwargs = dict( |
|
patch_size=16, |
|
stride=8, |
|
base_dims=[48, 48, 48], |
|
depth=[2, 6, 4], |
|
heads=[2, 4, 8], |
|
mlp_ratio=4, |
|
**kwargs |
|
) |
|
return _create_pit('pit_xs_224', pretrained, **model_kwargs) |
|
|
|
|
|
@register_model |
|
def pit_ti_224(pretrained, **kwargs): |
|
model_kwargs = dict( |
|
patch_size=16, |
|
stride=8, |
|
base_dims=[32, 32, 32], |
|
depth=[2, 6, 4], |
|
heads=[2, 4, 8], |
|
mlp_ratio=4, |
|
**kwargs |
|
) |
|
return _create_pit('pit_ti_224', pretrained, **model_kwargs) |
|
|
|
|
|
@register_model |
|
def pit_b_distilled_224(pretrained, **kwargs): |
|
model_kwargs = dict( |
|
patch_size=14, |
|
stride=7, |
|
base_dims=[64, 64, 64], |
|
depth=[3, 6, 4], |
|
heads=[4, 8, 16], |
|
mlp_ratio=4, |
|
distilled=True, |
|
**kwargs |
|
) |
|
return _create_pit('pit_b_distilled_224', pretrained, **model_kwargs) |
|
|
|
|
|
@register_model |
|
def pit_s_distilled_224(pretrained, **kwargs): |
|
model_kwargs = dict( |
|
patch_size=16, |
|
stride=8, |
|
base_dims=[48, 48, 48], |
|
depth=[2, 6, 4], |
|
heads=[3, 6, 12], |
|
mlp_ratio=4, |
|
distilled=True, |
|
**kwargs |
|
) |
|
return _create_pit('pit_s_distilled_224', pretrained, **model_kwargs) |
|
|
|
|
|
@register_model |
|
def pit_xs_distilled_224(pretrained, **kwargs): |
|
model_kwargs = dict( |
|
patch_size=16, |
|
stride=8, |
|
base_dims=[48, 48, 48], |
|
depth=[2, 6, 4], |
|
heads=[2, 4, 8], |
|
mlp_ratio=4, |
|
distilled=True, |
|
**kwargs |
|
) |
|
return _create_pit('pit_xs_distilled_224', pretrained, **model_kwargs) |
|
|
|
|
|
@register_model |
|
def pit_ti_distilled_224(pretrained, **kwargs): |
|
model_kwargs = dict( |
|
patch_size=16, |
|
stride=8, |
|
base_dims=[32, 32, 32], |
|
depth=[2, 6, 4], |
|
heads=[2, 4, 8], |
|
mlp_ratio=4, |
|
distilled=True, |
|
**kwargs |
|
) |
|
return _create_pit('pit_ti_distilled_224', pretrained, **model_kwargs) |