|
""" Shifted Window Attn |
|
|
|
This is a WIP experiment to apply windowed attention from the Swin Transformer |
|
to a stand-alone module for use as an attn block in conv nets. |
|
|
|
Based on original swin window code at https://github.com/microsoft/Swin-Transformer |
|
Swin Transformer paper: https://arxiv.org/pdf/2103.14030.pdf |
|
""" |
|
from typing import Optional |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from .drop import DropPath |
|
from .helpers import to_2tuple |
|
from .weight_init import trunc_normal_ |
|
|
|
|
|
def window_partition(x, win_size: int): |
|
""" |
|
Args: |
|
x: (B, H, W, C) |
|
win_size (int): window size |
|
|
|
Returns: |
|
windows: (num_windows*B, window_size, window_size, C) |
|
""" |
|
B, H, W, C = x.shape |
|
x = x.view(B, H // win_size, win_size, W // win_size, win_size, C) |
|
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, win_size, win_size, C) |
|
return windows |
|
|
|
|
|
def window_reverse(windows, win_size: int, H: int, W: int): |
|
""" |
|
Args: |
|
windows: (num_windows*B, window_size, window_size, C) |
|
win_size (int): Window size |
|
H (int): Height of image |
|
W (int): Width of image |
|
|
|
Returns: |
|
x: (B, H, W, C) |
|
""" |
|
B = int(windows.shape[0] / (H * W / win_size / win_size)) |
|
x = windows.view(B, H // win_size, W // win_size, win_size, win_size, -1) |
|
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) |
|
return x |
|
|
|
|
|
class WindowAttention(nn.Module): |
|
r""" Window based multi-head self attention (W-MSA) module with relative position bias. |
|
It supports both of shifted and non-shifted window. |
|
|
|
Args: |
|
dim (int): Number of input channels. |
|
win_size (int): The height and width of the window. |
|
num_heads (int): Number of attention heads. |
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 |
|
""" |
|
|
|
def __init__( |
|
self, dim, dim_out=None, feat_size=None, stride=1, win_size=8, shift_size=None, num_heads=8, |
|
qkv_bias=True, attn_drop=0.): |
|
|
|
super().__init__() |
|
self.dim_out = dim_out or dim |
|
self.feat_size = to_2tuple(feat_size) |
|
self.win_size = win_size |
|
self.shift_size = shift_size or win_size // 2 |
|
if min(self.feat_size) <= win_size: |
|
|
|
self.shift_size = 0 |
|
self.win_size = min(self.feat_size) |
|
assert 0 <= self.shift_size < self.win_size, "shift_size must in 0-window_size" |
|
self.num_heads = num_heads |
|
head_dim = self.dim_out // num_heads |
|
self.scale = head_dim ** -0.5 |
|
|
|
if self.shift_size > 0: |
|
|
|
H, W = self.feat_size |
|
img_mask = torch.zeros((1, H, W, 1)) |
|
h_slices = ( |
|
slice(0, -self.win_size), |
|
slice(-self.win_size, -self.shift_size), |
|
slice(-self.shift_size, None)) |
|
w_slices = ( |
|
slice(0, -self.win_size), |
|
slice(-self.win_size, -self.shift_size), |
|
slice(-self.shift_size, None)) |
|
cnt = 0 |
|
for h in h_slices: |
|
for w in w_slices: |
|
img_mask[:, h, w, :] = cnt |
|
cnt += 1 |
|
mask_windows = window_partition(img_mask, self.win_size) |
|
mask_windows = mask_windows.view(-1, self.win_size * self.win_size) |
|
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) |
|
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) |
|
else: |
|
attn_mask = None |
|
self.register_buffer("attn_mask", attn_mask) |
|
|
|
|
|
self.relative_position_bias_table = nn.Parameter( |
|
|
|
torch.zeros((2 * self.win_size - 1) * (2 * self.win_size - 1), num_heads)) |
|
trunc_normal_(self.relative_position_bias_table, std=.02) |
|
|
|
|
|
coords_h = torch.arange(self.win_size) |
|
coords_w = torch.arange(self.win_size) |
|
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) |
|
coords_flatten = torch.flatten(coords, 1) |
|
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] |
|
relative_coords = relative_coords.permute(1, 2, 0).contiguous() |
|
relative_coords[:, :, 0] += self.win_size - 1 |
|
relative_coords[:, :, 1] += self.win_size - 1 |
|
relative_coords[:, :, 0] *= 2 * self.win_size - 1 |
|
relative_position_index = relative_coords.sum(-1) |
|
self.register_buffer("relative_position_index", relative_position_index) |
|
|
|
self.qkv = nn.Linear(dim, self.dim_out * 3, bias=qkv_bias) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.softmax = nn.Softmax(dim=-1) |
|
self.pool = nn.AvgPool2d(2, 2) if stride == 2 else nn.Identity() |
|
|
|
def reset_parameters(self): |
|
trunc_normal_(self.qkv.weight, std=self.qkv.weight.shape[1] ** -0.5) |
|
trunc_normal_(self.relative_position_bias_table, std=.02) |
|
|
|
def forward(self, x): |
|
B, C, H, W = x.shape |
|
x = x.permute(0, 2, 3, 1) |
|
|
|
|
|
if self.shift_size > 0: |
|
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) |
|
else: |
|
shifted_x = x |
|
|
|
|
|
win_size_sq = self.win_size * self.win_size |
|
x_windows = window_partition(shifted_x, self.win_size) |
|
x_windows = x_windows.view(-1, win_size_sq, C) |
|
BW, N, _ = x_windows.shape |
|
|
|
qkv = self.qkv(x_windows) |
|
qkv = qkv.reshape(BW, N, 3, self.num_heads, self.dim_out // self.num_heads).permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv[0], qkv[1], qkv[2] |
|
q = q * self.scale |
|
attn = (q @ k.transpose(-2, -1)) |
|
|
|
relative_position_bias = self.relative_position_bias_table[ |
|
self.relative_position_index.view(-1)].view(win_size_sq, win_size_sq, -1) |
|
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() |
|
attn = attn + relative_position_bias.unsqueeze(0) |
|
if self.attn_mask is not None: |
|
num_win = self.attn_mask.shape[0] |
|
attn = attn.view(B, num_win, self.num_heads, N, N) + self.attn_mask.unsqueeze(1).unsqueeze(0) |
|
attn = attn.view(-1, self.num_heads, N, N) |
|
attn = self.softmax(attn) |
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(BW, N, self.dim_out) |
|
|
|
|
|
x = x.view(-1, self.win_size, self.win_size, self.dim_out) |
|
shifted_x = window_reverse(x, self.win_size, H, W) |
|
|
|
|
|
if self.shift_size > 0: |
|
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) |
|
else: |
|
x = shifted_x |
|
x = x.view(B, H, W, self.dim_out).permute(0, 3, 1, 2) |
|
x = self.pool(x) |
|
return x |
|
|
|
|
|
|