|
""" Split BatchNorm |
|
|
|
A PyTorch BatchNorm layer that splits input batch into N equal parts and passes each through |
|
a separate BN layer. The first split is passed through the parent BN layers with weight/bias |
|
keys the same as the original BN. All other splits pass through BN sub-layers under the '.aux_bn' |
|
namespace. |
|
|
|
This allows easily removing the auxiliary BN layers after training to efficiently |
|
achieve the 'Auxiliary BatchNorm' as described in the AdvProp Paper, section 4.2, |
|
'Disentangled Learning via An Auxiliary BN' |
|
|
|
Hacked together by / Copyright 2020 Ross Wightman |
|
""" |
|
import torch |
|
import torch.nn as nn |
|
|
|
|
|
class SplitBatchNorm2d(torch.nn.BatchNorm2d): |
|
|
|
def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True, |
|
track_running_stats=True, num_splits=2): |
|
super().__init__(num_features, eps, momentum, affine, track_running_stats) |
|
assert num_splits > 1, 'Should have at least one aux BN layer (num_splits at least 2)' |
|
self.num_splits = num_splits |
|
self.aux_bn = nn.ModuleList([ |
|
nn.BatchNorm2d(num_features, eps, momentum, affine, track_running_stats) for _ in range(num_splits - 1)]) |
|
|
|
def forward(self, input: torch.Tensor): |
|
if self.training: |
|
split_size = input.shape[0] // self.num_splits |
|
assert input.shape[0] == split_size * self.num_splits, "batch size must be evenly divisible by num_splits" |
|
split_input = input.split(split_size) |
|
x = [super().forward(split_input[0])] |
|
for i, a in enumerate(self.aux_bn): |
|
x.append(a(split_input[i + 1])) |
|
return torch.cat(x, dim=0) |
|
else: |
|
return super().forward(input) |
|
|
|
|
|
def convert_splitbn_model(module, num_splits=2): |
|
""" |
|
Recursively traverse module and its children to replace all instances of |
|
``torch.nn.modules.batchnorm._BatchNorm`` with `SplitBatchnorm2d`. |
|
Args: |
|
module (torch.nn.Module): input module |
|
num_splits: number of separate batchnorm layers to split input across |
|
Example:: |
|
>>> # model is an instance of torch.nn.Module |
|
>>> model = timm.models.convert_splitbn_model(model, num_splits=2) |
|
""" |
|
mod = module |
|
if isinstance(module, torch.nn.modules.instancenorm._InstanceNorm): |
|
return module |
|
if isinstance(module, torch.nn.modules.batchnorm._BatchNorm): |
|
mod = SplitBatchNorm2d( |
|
module.num_features, module.eps, module.momentum, module.affine, |
|
module.track_running_stats, num_splits=num_splits) |
|
mod.running_mean = module.running_mean |
|
mod.running_var = module.running_var |
|
mod.num_batches_tracked = module.num_batches_tracked |
|
if module.affine: |
|
mod.weight.data = module.weight.data.clone().detach() |
|
mod.bias.data = module.bias.data.clone().detach() |
|
for aux in mod.aux_bn: |
|
aux.running_mean = module.running_mean.clone() |
|
aux.running_var = module.running_var.clone() |
|
aux.num_batches_tracked = module.num_batches_tracked.clone() |
|
if module.affine: |
|
aux.weight.data = module.weight.data.clone().detach() |
|
aux.bias.data = module.bias.data.clone().detach() |
|
for name, child in module.named_children(): |
|
mod.add_module(name, convert_splitbn_model(child, num_splits=num_splits)) |
|
del module |
|
return mod |
|
|