|
""" Padding Helpers |
|
|
|
Hacked together by / Copyright 2020 Ross Wightman |
|
""" |
|
import math |
|
from typing import List, Tuple |
|
|
|
import torch.nn.functional as F |
|
|
|
|
|
|
|
def get_padding(kernel_size: int, stride: int = 1, dilation: int = 1, **_) -> int: |
|
padding = ((stride - 1) + dilation * (kernel_size - 1)) // 2 |
|
return padding |
|
|
|
|
|
|
|
def get_same_padding(x: int, k: int, s: int, d: int): |
|
return max((math.ceil(x / s) - 1) * s + (k - 1) * d + 1 - x, 0) |
|
|
|
|
|
|
|
def is_static_pad(kernel_size: int, stride: int = 1, dilation: int = 1, **_): |
|
return stride == 1 and (dilation * (kernel_size - 1)) % 2 == 0 |
|
|
|
|
|
|
|
def pad_same(x, k: List[int], s: List[int], d: List[int] = (1, 1), value: float = 0): |
|
ih, iw = x.size()[-2:] |
|
pad_h, pad_w = get_same_padding(ih, k[0], s[0], d[0]), get_same_padding(iw, k[1], s[1], d[1]) |
|
if pad_h > 0 or pad_w > 0: |
|
x = F.pad(x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2], value=value) |
|
return x |
|
|
|
|
|
def get_padding_value(padding, kernel_size, **kwargs) -> Tuple[Tuple, bool]: |
|
dynamic = False |
|
if isinstance(padding, str): |
|
|
|
padding = padding.lower() |
|
if padding == 'same': |
|
|
|
if is_static_pad(kernel_size, **kwargs): |
|
|
|
padding = get_padding(kernel_size, **kwargs) |
|
else: |
|
|
|
padding = 0 |
|
dynamic = True |
|
elif padding == 'valid': |
|
|
|
padding = 0 |
|
else: |
|
|
|
padding = get_padding(kernel_size, **kwargs) |
|
return padding, dynamic |
|
|