|
""" Lambda Layer |
|
|
|
Paper: `LambdaNetworks: Modeling Long-Range Interactions Without Attention` |
|
- https://arxiv.org/abs/2102.08602 |
|
|
|
@misc{2102.08602, |
|
Author = {Irwan Bello}, |
|
Title = {LambdaNetworks: Modeling Long-Range Interactions Without Attention}, |
|
Year = {2021}, |
|
} |
|
|
|
Status: |
|
This impl is a WIP. Code snippets in the paper were used as reference but |
|
good chance some details are missing/wrong. |
|
|
|
I've only implemented local lambda conv based pos embeddings. |
|
|
|
For a PyTorch impl that includes other embedding options checkout |
|
https://github.com/lucidrains/lambda-networks |
|
|
|
Hacked together by / Copyright 2021 Ross Wightman |
|
""" |
|
import torch |
|
from torch import nn |
|
import torch.nn.functional as F |
|
|
|
from .weight_init import trunc_normal_ |
|
|
|
|
|
class LambdaLayer(nn.Module): |
|
"""Lambda Layer w/ lambda conv position embedding |
|
|
|
Paper: `LambdaNetworks: Modeling Long-Range Interactions Without Attention` |
|
- https://arxiv.org/abs/2102.08602 |
|
""" |
|
def __init__( |
|
self, |
|
dim, dim_out=None, stride=1, num_heads=4, dim_head=16, r=7, qkv_bias=False): |
|
super().__init__() |
|
self.dim = dim |
|
self.dim_out = dim_out or dim |
|
self.dim_k = dim_head |
|
self.num_heads = num_heads |
|
assert self.dim_out % num_heads == 0, ' should be divided by num_heads' |
|
self.dim_v = self.dim_out // num_heads |
|
self.r = r |
|
|
|
self.qkv = nn.Conv2d( |
|
dim, |
|
num_heads * dim_head + dim_head + self.dim_v, |
|
kernel_size=1, bias=qkv_bias) |
|
self.norm_q = nn.BatchNorm2d(num_heads * dim_head) |
|
self.norm_v = nn.BatchNorm2d(self.dim_v) |
|
|
|
|
|
self.conv_lambda = nn.Conv3d(1, dim_head, (r, r, 1), padding=(r // 2, r // 2, 0)) |
|
|
|
self.pool = nn.AvgPool2d(2, 2) if stride == 2 else nn.Identity() |
|
|
|
def reset_parameters(self): |
|
trunc_normal_(self.qkv.weight, std=self.dim ** -0.5) |
|
trunc_normal_(self.conv_lambda.weight, std=self.dim_k ** -0.5) |
|
|
|
def forward(self, x): |
|
B, C, H, W = x.shape |
|
M = H * W |
|
|
|
qkv = self.qkv(x) |
|
q, k, v = torch.split(qkv, [ |
|
self.num_heads * self.dim_k, self.dim_k, self.dim_v], dim=1) |
|
q = self.norm_q(q).reshape(B, self.num_heads, self.dim_k, M).transpose(-1, -2) |
|
v = self.norm_v(v).reshape(B, self.dim_v, M).transpose(-1, -2) |
|
k = F.softmax(k.reshape(B, self.dim_k, M), dim=-1) |
|
|
|
content_lam = k @ v |
|
content_out = q @ content_lam.unsqueeze(1) |
|
|
|
position_lam = self.conv_lambda(v.reshape(B, 1, H, W, self.dim_v)) |
|
position_lam = position_lam.reshape(B, 1, self.dim_k, H * W, self.dim_v).transpose(2, 3) |
|
position_out = (q.unsqueeze(-2) @ position_lam).squeeze(-2) |
|
|
|
out = (content_out + position_out).transpose(3, 1).reshape(B, C, H, W) |
|
out = self.pool(out) |
|
return out |
|
|