|
""" Conv2d + BN + Act |
|
|
|
Hacked together by / Copyright 2020 Ross Wightman |
|
""" |
|
from torch import nn as nn |
|
|
|
from .create_conv2d import create_conv2d |
|
from .create_norm_act import convert_norm_act |
|
|
|
|
|
class ConvBnAct(nn.Module): |
|
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding='', dilation=1, groups=1, |
|
bias=False, apply_act=True, norm_layer=nn.BatchNorm2d, act_layer=nn.ReLU, aa_layer=None, |
|
drop_block=None): |
|
super(ConvBnAct, self).__init__() |
|
use_aa = aa_layer is not None |
|
|
|
self.conv = create_conv2d( |
|
in_channels, out_channels, kernel_size, stride=1 if use_aa else stride, |
|
padding=padding, dilation=dilation, groups=groups, bias=bias) |
|
|
|
|
|
norm_act_layer = convert_norm_act(norm_layer, act_layer) |
|
self.bn = norm_act_layer(out_channels, apply_act=apply_act, drop_block=drop_block) |
|
self.aa = aa_layer(channels=out_channels) if stride == 2 and use_aa else None |
|
|
|
@property |
|
def in_channels(self): |
|
return self.conv.in_channels |
|
|
|
@property |
|
def out_channels(self): |
|
return self.conv.out_channels |
|
|
|
def forward(self, x): |
|
x = self.conv(x) |
|
x = self.bn(x) |
|
if self.aa is not None: |
|
x = self.aa(x) |
|
return x |
|
|