|
""" Conv2d w/ Same Padding |
|
|
|
Hacked together by / Copyright 2020 Ross Wightman |
|
""" |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from typing import Tuple, Optional |
|
|
|
from .padding import pad_same, get_padding_value |
|
|
|
|
|
def conv2d_same( |
|
x, weight: torch.Tensor, bias: Optional[torch.Tensor] = None, stride: Tuple[int, int] = (1, 1), |
|
padding: Tuple[int, int] = (0, 0), dilation: Tuple[int, int] = (1, 1), groups: int = 1): |
|
x = pad_same(x, weight.shape[-2:], stride, dilation) |
|
return F.conv2d(x, weight, bias, stride, (0, 0), dilation, groups) |
|
|
|
|
|
class Conv2dSame(nn.Conv2d): |
|
""" Tensorflow like 'SAME' convolution wrapper for 2D convolutions |
|
""" |
|
|
|
def __init__(self, in_channels, out_channels, kernel_size, stride=1, |
|
padding=0, dilation=1, groups=1, bias=True): |
|
super(Conv2dSame, self).__init__( |
|
in_channels, out_channels, kernel_size, stride, 0, dilation, groups, bias) |
|
|
|
def forward(self, x): |
|
return conv2d_same(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups) |
|
|
|
|
|
def create_conv2d_pad(in_chs, out_chs, kernel_size, **kwargs): |
|
padding = kwargs.pop('padding', '') |
|
kwargs.setdefault('bias', False) |
|
padding, is_dynamic = get_padding_value(padding, kernel_size, **kwargs) |
|
if is_dynamic: |
|
return Conv2dSame(in_chs, out_chs, kernel_size, **kwargs) |
|
else: |
|
return nn.Conv2d(in_chs, out_chs, kernel_size, padding=padding, **kwargs) |
|
|
|
|
|
|