|
""" Classifier head and layer factory |
|
|
|
Hacked together by / Copyright 2020 Ross Wightman |
|
""" |
|
from torch import nn as nn |
|
from torch.nn import functional as F |
|
|
|
from .adaptive_avgmax_pool import SelectAdaptivePool2d |
|
from .linear import Linear |
|
|
|
|
|
def _create_pool(num_features, num_classes, pool_type='avg', use_conv=False): |
|
flatten_in_pool = not use_conv |
|
if not pool_type: |
|
assert num_classes == 0 or use_conv,\ |
|
'Pooling can only be disabled if classifier is also removed or conv classifier is used' |
|
flatten_in_pool = False |
|
global_pool = SelectAdaptivePool2d(pool_type=pool_type, flatten=flatten_in_pool) |
|
num_pooled_features = num_features * global_pool.feat_mult() |
|
return global_pool, num_pooled_features |
|
|
|
|
|
def _create_fc(num_features, num_classes, use_conv=False): |
|
if num_classes <= 0: |
|
fc = nn.Identity() |
|
elif use_conv: |
|
fc = nn.Conv2d(num_features, num_classes, 1, bias=True) |
|
else: |
|
|
|
fc = Linear(num_features, num_classes, bias=True) |
|
return fc |
|
|
|
|
|
def create_classifier(num_features, num_classes, pool_type='avg', use_conv=False): |
|
global_pool, num_pooled_features = _create_pool(num_features, num_classes, pool_type, use_conv=use_conv) |
|
fc = _create_fc(num_pooled_features, num_classes, use_conv=use_conv) |
|
return global_pool, fc |
|
|
|
|
|
class ClassifierHead(nn.Module): |
|
"""Classifier head w/ configurable global pooling and dropout.""" |
|
|
|
def __init__(self, in_chs, num_classes, pool_type='avg', drop_rate=0., use_conv=False): |
|
super(ClassifierHead, self).__init__() |
|
self.drop_rate = drop_rate |
|
self.global_pool, num_pooled_features = _create_pool(in_chs, num_classes, pool_type, use_conv=use_conv) |
|
self.fc = _create_fc(num_pooled_features, num_classes, use_conv=use_conv) |
|
self.flatten = nn.Flatten(1) if use_conv and pool_type else nn.Identity() |
|
|
|
def forward(self, x): |
|
x = self.global_pool(x) |
|
if self.drop_rate: |
|
x = F.dropout(x, p=float(self.drop_rate), training=self.training) |
|
x = self.fc(x) |
|
x = self.flatten(x) |
|
return x |
|
|