|
""" Pytorch Inception-V4 implementation |
|
Sourced from https://github.com/Cadene/tensorflow-model-zoo.torch (MIT License) which is |
|
based upon Google's Tensorflow implementation and pretrained weights (Apache 2.0 License) |
|
""" |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from timm.data import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD |
|
from .helpers import build_model_with_cfg |
|
from .layers import create_classifier |
|
from .registry import register_model |
|
|
|
__all__ = ['InceptionV4'] |
|
|
|
default_cfgs = { |
|
'inception_v4': { |
|
'url': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-cadene/inceptionv4-8e4777a0.pth', |
|
'num_classes': 1000, 'input_size': (3, 299, 299), 'pool_size': (8, 8), |
|
'crop_pct': 0.875, 'interpolation': 'bicubic', |
|
'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD, |
|
'first_conv': 'features.0.conv', 'classifier': 'last_linear', |
|
'label_offset': 1, |
|
} |
|
} |
|
|
|
|
|
class BasicConv2d(nn.Module): |
|
def __init__(self, in_planes, out_planes, kernel_size, stride, padding=0): |
|
super(BasicConv2d, self).__init__() |
|
self.conv = nn.Conv2d( |
|
in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, bias=False) |
|
self.bn = nn.BatchNorm2d(out_planes, eps=0.001) |
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
def forward(self, x): |
|
x = self.conv(x) |
|
x = self.bn(x) |
|
x = self.relu(x) |
|
return x |
|
|
|
|
|
class Mixed3a(nn.Module): |
|
def __init__(self): |
|
super(Mixed3a, self).__init__() |
|
self.maxpool = nn.MaxPool2d(3, stride=2) |
|
self.conv = BasicConv2d(64, 96, kernel_size=3, stride=2) |
|
|
|
def forward(self, x): |
|
x0 = self.maxpool(x) |
|
x1 = self.conv(x) |
|
out = torch.cat((x0, x1), 1) |
|
return out |
|
|
|
|
|
class Mixed4a(nn.Module): |
|
def __init__(self): |
|
super(Mixed4a, self).__init__() |
|
|
|
self.branch0 = nn.Sequential( |
|
BasicConv2d(160, 64, kernel_size=1, stride=1), |
|
BasicConv2d(64, 96, kernel_size=3, stride=1) |
|
) |
|
|
|
self.branch1 = nn.Sequential( |
|
BasicConv2d(160, 64, kernel_size=1, stride=1), |
|
BasicConv2d(64, 64, kernel_size=(1, 7), stride=1, padding=(0, 3)), |
|
BasicConv2d(64, 64, kernel_size=(7, 1), stride=1, padding=(3, 0)), |
|
BasicConv2d(64, 96, kernel_size=(3, 3), stride=1) |
|
) |
|
|
|
def forward(self, x): |
|
x0 = self.branch0(x) |
|
x1 = self.branch1(x) |
|
out = torch.cat((x0, x1), 1) |
|
return out |
|
|
|
|
|
class Mixed5a(nn.Module): |
|
def __init__(self): |
|
super(Mixed5a, self).__init__() |
|
self.conv = BasicConv2d(192, 192, kernel_size=3, stride=2) |
|
self.maxpool = nn.MaxPool2d(3, stride=2) |
|
|
|
def forward(self, x): |
|
x0 = self.conv(x) |
|
x1 = self.maxpool(x) |
|
out = torch.cat((x0, x1), 1) |
|
return out |
|
|
|
|
|
class InceptionA(nn.Module): |
|
def __init__(self): |
|
super(InceptionA, self).__init__() |
|
self.branch0 = BasicConv2d(384, 96, kernel_size=1, stride=1) |
|
|
|
self.branch1 = nn.Sequential( |
|
BasicConv2d(384, 64, kernel_size=1, stride=1), |
|
BasicConv2d(64, 96, kernel_size=3, stride=1, padding=1) |
|
) |
|
|
|
self.branch2 = nn.Sequential( |
|
BasicConv2d(384, 64, kernel_size=1, stride=1), |
|
BasicConv2d(64, 96, kernel_size=3, stride=1, padding=1), |
|
BasicConv2d(96, 96, kernel_size=3, stride=1, padding=1) |
|
) |
|
|
|
self.branch3 = nn.Sequential( |
|
nn.AvgPool2d(3, stride=1, padding=1, count_include_pad=False), |
|
BasicConv2d(384, 96, kernel_size=1, stride=1) |
|
) |
|
|
|
def forward(self, x): |
|
x0 = self.branch0(x) |
|
x1 = self.branch1(x) |
|
x2 = self.branch2(x) |
|
x3 = self.branch3(x) |
|
out = torch.cat((x0, x1, x2, x3), 1) |
|
return out |
|
|
|
|
|
class ReductionA(nn.Module): |
|
def __init__(self): |
|
super(ReductionA, self).__init__() |
|
self.branch0 = BasicConv2d(384, 384, kernel_size=3, stride=2) |
|
|
|
self.branch1 = nn.Sequential( |
|
BasicConv2d(384, 192, kernel_size=1, stride=1), |
|
BasicConv2d(192, 224, kernel_size=3, stride=1, padding=1), |
|
BasicConv2d(224, 256, kernel_size=3, stride=2) |
|
) |
|
|
|
self.branch2 = nn.MaxPool2d(3, stride=2) |
|
|
|
def forward(self, x): |
|
x0 = self.branch0(x) |
|
x1 = self.branch1(x) |
|
x2 = self.branch2(x) |
|
out = torch.cat((x0, x1, x2), 1) |
|
return out |
|
|
|
|
|
class InceptionB(nn.Module): |
|
def __init__(self): |
|
super(InceptionB, self).__init__() |
|
self.branch0 = BasicConv2d(1024, 384, kernel_size=1, stride=1) |
|
|
|
self.branch1 = nn.Sequential( |
|
BasicConv2d(1024, 192, kernel_size=1, stride=1), |
|
BasicConv2d(192, 224, kernel_size=(1, 7), stride=1, padding=(0, 3)), |
|
BasicConv2d(224, 256, kernel_size=(7, 1), stride=1, padding=(3, 0)) |
|
) |
|
|
|
self.branch2 = nn.Sequential( |
|
BasicConv2d(1024, 192, kernel_size=1, stride=1), |
|
BasicConv2d(192, 192, kernel_size=(7, 1), stride=1, padding=(3, 0)), |
|
BasicConv2d(192, 224, kernel_size=(1, 7), stride=1, padding=(0, 3)), |
|
BasicConv2d(224, 224, kernel_size=(7, 1), stride=1, padding=(3, 0)), |
|
BasicConv2d(224, 256, kernel_size=(1, 7), stride=1, padding=(0, 3)) |
|
) |
|
|
|
self.branch3 = nn.Sequential( |
|
nn.AvgPool2d(3, stride=1, padding=1, count_include_pad=False), |
|
BasicConv2d(1024, 128, kernel_size=1, stride=1) |
|
) |
|
|
|
def forward(self, x): |
|
x0 = self.branch0(x) |
|
x1 = self.branch1(x) |
|
x2 = self.branch2(x) |
|
x3 = self.branch3(x) |
|
out = torch.cat((x0, x1, x2, x3), 1) |
|
return out |
|
|
|
|
|
class ReductionB(nn.Module): |
|
def __init__(self): |
|
super(ReductionB, self).__init__() |
|
|
|
self.branch0 = nn.Sequential( |
|
BasicConv2d(1024, 192, kernel_size=1, stride=1), |
|
BasicConv2d(192, 192, kernel_size=3, stride=2) |
|
) |
|
|
|
self.branch1 = nn.Sequential( |
|
BasicConv2d(1024, 256, kernel_size=1, stride=1), |
|
BasicConv2d(256, 256, kernel_size=(1, 7), stride=1, padding=(0, 3)), |
|
BasicConv2d(256, 320, kernel_size=(7, 1), stride=1, padding=(3, 0)), |
|
BasicConv2d(320, 320, kernel_size=3, stride=2) |
|
) |
|
|
|
self.branch2 = nn.MaxPool2d(3, stride=2) |
|
|
|
def forward(self, x): |
|
x0 = self.branch0(x) |
|
x1 = self.branch1(x) |
|
x2 = self.branch2(x) |
|
out = torch.cat((x0, x1, x2), 1) |
|
return out |
|
|
|
|
|
class InceptionC(nn.Module): |
|
def __init__(self): |
|
super(InceptionC, self).__init__() |
|
|
|
self.branch0 = BasicConv2d(1536, 256, kernel_size=1, stride=1) |
|
|
|
self.branch1_0 = BasicConv2d(1536, 384, kernel_size=1, stride=1) |
|
self.branch1_1a = BasicConv2d(384, 256, kernel_size=(1, 3), stride=1, padding=(0, 1)) |
|
self.branch1_1b = BasicConv2d(384, 256, kernel_size=(3, 1), stride=1, padding=(1, 0)) |
|
|
|
self.branch2_0 = BasicConv2d(1536, 384, kernel_size=1, stride=1) |
|
self.branch2_1 = BasicConv2d(384, 448, kernel_size=(3, 1), stride=1, padding=(1, 0)) |
|
self.branch2_2 = BasicConv2d(448, 512, kernel_size=(1, 3), stride=1, padding=(0, 1)) |
|
self.branch2_3a = BasicConv2d(512, 256, kernel_size=(1, 3), stride=1, padding=(0, 1)) |
|
self.branch2_3b = BasicConv2d(512, 256, kernel_size=(3, 1), stride=1, padding=(1, 0)) |
|
|
|
self.branch3 = nn.Sequential( |
|
nn.AvgPool2d(3, stride=1, padding=1, count_include_pad=False), |
|
BasicConv2d(1536, 256, kernel_size=1, stride=1) |
|
) |
|
|
|
def forward(self, x): |
|
x0 = self.branch0(x) |
|
|
|
x1_0 = self.branch1_0(x) |
|
x1_1a = self.branch1_1a(x1_0) |
|
x1_1b = self.branch1_1b(x1_0) |
|
x1 = torch.cat((x1_1a, x1_1b), 1) |
|
|
|
x2_0 = self.branch2_0(x) |
|
x2_1 = self.branch2_1(x2_0) |
|
x2_2 = self.branch2_2(x2_1) |
|
x2_3a = self.branch2_3a(x2_2) |
|
x2_3b = self.branch2_3b(x2_2) |
|
x2 = torch.cat((x2_3a, x2_3b), 1) |
|
|
|
x3 = self.branch3(x) |
|
|
|
out = torch.cat((x0, x1, x2, x3), 1) |
|
return out |
|
|
|
|
|
class InceptionV4(nn.Module): |
|
def __init__(self, num_classes=1000, in_chans=3, output_stride=32, drop_rate=0., global_pool='avg'): |
|
super(InceptionV4, self).__init__() |
|
assert output_stride == 32 |
|
self.drop_rate = drop_rate |
|
self.num_classes = num_classes |
|
self.num_features = 1536 |
|
|
|
self.features = nn.Sequential( |
|
BasicConv2d(in_chans, 32, kernel_size=3, stride=2), |
|
BasicConv2d(32, 32, kernel_size=3, stride=1), |
|
BasicConv2d(32, 64, kernel_size=3, stride=1, padding=1), |
|
Mixed3a(), |
|
Mixed4a(), |
|
Mixed5a(), |
|
InceptionA(), |
|
InceptionA(), |
|
InceptionA(), |
|
InceptionA(), |
|
ReductionA(), |
|
InceptionB(), |
|
InceptionB(), |
|
InceptionB(), |
|
InceptionB(), |
|
InceptionB(), |
|
InceptionB(), |
|
InceptionB(), |
|
ReductionB(), |
|
InceptionC(), |
|
InceptionC(), |
|
InceptionC(), |
|
) |
|
self.feature_info = [ |
|
dict(num_chs=64, reduction=2, module='features.2'), |
|
dict(num_chs=160, reduction=4, module='features.3'), |
|
dict(num_chs=384, reduction=8, module='features.9'), |
|
dict(num_chs=1024, reduction=16, module='features.17'), |
|
dict(num_chs=1536, reduction=32, module='features.21'), |
|
] |
|
self.global_pool, self.last_linear = create_classifier( |
|
self.num_features, self.num_classes, pool_type=global_pool) |
|
|
|
def get_classifier(self): |
|
return self.last_linear |
|
|
|
def reset_classifier(self, num_classes, global_pool='avg'): |
|
self.num_classes = num_classes |
|
self.global_pool, self.last_linear = create_classifier( |
|
self.num_features, self.num_classes, pool_type=global_pool) |
|
|
|
def forward_features(self, x): |
|
return self.features(x) |
|
|
|
def forward(self, x): |
|
x = self.forward_features(x) |
|
x = self.global_pool(x) |
|
if self.drop_rate > 0: |
|
x = F.dropout(x, p=self.drop_rate, training=self.training) |
|
x = self.last_linear(x) |
|
return x |
|
|
|
|
|
def _create_inception_v4(variant, pretrained=False, **kwargs): |
|
return build_model_with_cfg( |
|
InceptionV4, variant, pretrained, |
|
default_cfg=default_cfgs[variant], |
|
feature_cfg=dict(flatten_sequential=True), |
|
**kwargs) |
|
|
|
|
|
@register_model |
|
def inception_v4(pretrained=False, **kwargs): |
|
return _create_inception_v4('inception_v4', pretrained, **kwargs) |
|
|