|
"""PyTorch CspNet |
|
|
|
A PyTorch implementation of Cross Stage Partial Networks including: |
|
* CSPResNet50 |
|
* CSPResNeXt50 |
|
* CSPDarkNet53 |
|
* and DarkNet53 for good measure |
|
|
|
Based on paper `CSPNet: A New Backbone that can Enhance Learning Capability of CNN` - https://arxiv.org/abs/1911.11929 |
|
|
|
Reference impl via darknet cfg files at https://github.com/WongKinYiu/CrossStagePartialNetworks |
|
|
|
Hacked together by / Copyright 2020 Ross Wightman |
|
""" |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD |
|
from .helpers import build_model_with_cfg |
|
from .layers import ClassifierHead, ConvBnAct, DropPath, create_attn, get_norm_act_layer |
|
from .registry import register_model |
|
|
|
|
|
__all__ = ['CspNet'] |
|
|
|
|
|
def _cfg(url='', **kwargs): |
|
return { |
|
'url': url, |
|
'num_classes': 1000, 'input_size': (3, 256, 256), 'pool_size': (8, 8), |
|
'crop_pct': 0.887, 'interpolation': 'bilinear', |
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, |
|
'first_conv': 'stem.conv1.conv', 'classifier': 'head.fc', |
|
**kwargs |
|
} |
|
|
|
|
|
default_cfgs = { |
|
'cspresnet50': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/cspresnet50_ra-d3e8d487.pth'), |
|
'cspresnet50d': _cfg(url=''), |
|
'cspresnet50w': _cfg(url=''), |
|
'cspresnext50': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/cspresnext50_ra_224-648b4713.pth', |
|
input_size=(3, 224, 224), pool_size=(7, 7), crop_pct=0.875 |
|
), |
|
'cspresnext50_iabn': _cfg(url=''), |
|
'cspdarknet53': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/cspdarknet53_ra_256-d05c7c21.pth'), |
|
'cspdarknet53_iabn': _cfg(url=''), |
|
'darknet53': _cfg(url=''), |
|
} |
|
|
|
|
|
model_cfgs = dict( |
|
cspresnet50=dict( |
|
stem=dict(out_chs=64, kernel_size=7, stride=2, pool='max'), |
|
stage=dict( |
|
out_chs=(128, 256, 512, 1024), |
|
depth=(3, 3, 5, 2), |
|
stride=(1,) + (2,) * 3, |
|
exp_ratio=(2.,) * 4, |
|
bottle_ratio=(0.5,) * 4, |
|
block_ratio=(1.,) * 4, |
|
cross_linear=True, |
|
) |
|
), |
|
cspresnet50d=dict( |
|
stem=dict(out_chs=[32, 32, 64], kernel_size=3, stride=2, pool='max'), |
|
stage=dict( |
|
out_chs=(128, 256, 512, 1024), |
|
depth=(3, 3, 5, 2), |
|
stride=(1,) + (2,) * 3, |
|
exp_ratio=(2.,) * 4, |
|
bottle_ratio=(0.5,) * 4, |
|
block_ratio=(1.,) * 4, |
|
cross_linear=True, |
|
) |
|
), |
|
cspresnet50w=dict( |
|
stem=dict(out_chs=[32, 32, 64], kernel_size=3, stride=2, pool='max'), |
|
stage=dict( |
|
out_chs=(256, 512, 1024, 2048), |
|
depth=(3, 3, 5, 2), |
|
stride=(1,) + (2,) * 3, |
|
exp_ratio=(1.,) * 4, |
|
bottle_ratio=(0.25,) * 4, |
|
block_ratio=(0.5,) * 4, |
|
cross_linear=True, |
|
) |
|
), |
|
cspresnext50=dict( |
|
stem=dict(out_chs=64, kernel_size=7, stride=2, pool='max'), |
|
stage=dict( |
|
out_chs=(256, 512, 1024, 2048), |
|
depth=(3, 3, 5, 2), |
|
stride=(1,) + (2,) * 3, |
|
groups=(32,) * 4, |
|
exp_ratio=(1.,) * 4, |
|
bottle_ratio=(1.,) * 4, |
|
block_ratio=(0.5,) * 4, |
|
cross_linear=True, |
|
) |
|
), |
|
cspdarknet53=dict( |
|
stem=dict(out_chs=32, kernel_size=3, stride=1, pool=''), |
|
stage=dict( |
|
out_chs=(64, 128, 256, 512, 1024), |
|
depth=(1, 2, 8, 8, 4), |
|
stride=(2,) * 5, |
|
exp_ratio=(2.,) + (1.,) * 4, |
|
bottle_ratio=(0.5,) + (1.0,) * 4, |
|
block_ratio=(1.,) + (0.5,) * 4, |
|
down_growth=True, |
|
) |
|
), |
|
darknet53=dict( |
|
stem=dict(out_chs=32, kernel_size=3, stride=1, pool=''), |
|
stage=dict( |
|
out_chs=(64, 128, 256, 512, 1024), |
|
depth=(1, 2, 8, 8, 4), |
|
stride=(2,) * 5, |
|
bottle_ratio=(0.5,) * 5, |
|
block_ratio=(1.,) * 5, |
|
) |
|
) |
|
) |
|
|
|
|
|
def create_stem( |
|
in_chans=3, out_chs=32, kernel_size=3, stride=2, pool='', |
|
act_layer=None, norm_layer=None, aa_layer=None): |
|
stem = nn.Sequential() |
|
if not isinstance(out_chs, (tuple, list)): |
|
out_chs = [out_chs] |
|
assert len(out_chs) |
|
in_c = in_chans |
|
for i, out_c in enumerate(out_chs): |
|
conv_name = f'conv{i + 1}' |
|
stem.add_module(conv_name, ConvBnAct( |
|
in_c, out_c, kernel_size, stride=stride if i == 0 else 1, |
|
act_layer=act_layer, norm_layer=norm_layer)) |
|
in_c = out_c |
|
last_conv = conv_name |
|
if pool: |
|
if aa_layer is not None: |
|
stem.add_module('pool', nn.MaxPool2d(kernel_size=3, stride=1, padding=1)) |
|
stem.add_module('aa', aa_layer(channels=in_c, stride=2)) |
|
else: |
|
stem.add_module('pool', nn.MaxPool2d(kernel_size=3, stride=2, padding=1)) |
|
return stem, dict(num_chs=in_c, reduction=stride, module='.'.join(['stem', last_conv])) |
|
|
|
|
|
class ResBottleneck(nn.Module): |
|
""" ResNe(X)t Bottleneck Block |
|
""" |
|
|
|
def __init__(self, in_chs, out_chs, dilation=1, bottle_ratio=0.25, groups=1, |
|
act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, attn_last=False, |
|
attn_layer=None, aa_layer=None, drop_block=None, drop_path=None): |
|
super(ResBottleneck, self).__init__() |
|
mid_chs = int(round(out_chs * bottle_ratio)) |
|
ckwargs = dict(act_layer=act_layer, norm_layer=norm_layer, aa_layer=aa_layer, drop_block=drop_block) |
|
|
|
self.conv1 = ConvBnAct(in_chs, mid_chs, kernel_size=1, **ckwargs) |
|
self.conv2 = ConvBnAct(mid_chs, mid_chs, kernel_size=3, dilation=dilation, groups=groups, **ckwargs) |
|
self.attn2 = create_attn(attn_layer, channels=mid_chs) if not attn_last else None |
|
self.conv3 = ConvBnAct(mid_chs, out_chs, kernel_size=1, apply_act=False, **ckwargs) |
|
self.attn3 = create_attn(attn_layer, channels=out_chs) if attn_last else None |
|
self.drop_path = drop_path |
|
self.act3 = act_layer(inplace=True) |
|
|
|
def zero_init_last_bn(self): |
|
nn.init.zeros_(self.conv3.bn.weight) |
|
|
|
def forward(self, x): |
|
shortcut = x |
|
x = self.conv1(x) |
|
x = self.conv2(x) |
|
if self.attn2 is not None: |
|
x = self.attn2(x) |
|
x = self.conv3(x) |
|
if self.attn3 is not None: |
|
x = self.attn3(x) |
|
if self.drop_path is not None: |
|
x = self.drop_path(x) |
|
x = x + shortcut |
|
|
|
|
|
x = self.act3(x) |
|
return x |
|
|
|
|
|
class DarkBlock(nn.Module): |
|
""" DarkNet Block |
|
""" |
|
|
|
def __init__(self, in_chs, out_chs, dilation=1, bottle_ratio=0.5, groups=1, |
|
act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, attn_layer=None, aa_layer=None, |
|
drop_block=None, drop_path=None): |
|
super(DarkBlock, self).__init__() |
|
mid_chs = int(round(out_chs * bottle_ratio)) |
|
ckwargs = dict(act_layer=act_layer, norm_layer=norm_layer, aa_layer=aa_layer, drop_block=drop_block) |
|
self.conv1 = ConvBnAct(in_chs, mid_chs, kernel_size=1, **ckwargs) |
|
self.conv2 = ConvBnAct(mid_chs, out_chs, kernel_size=3, dilation=dilation, groups=groups, **ckwargs) |
|
self.attn = create_attn(attn_layer, channels=out_chs) |
|
self.drop_path = drop_path |
|
|
|
def zero_init_last_bn(self): |
|
nn.init.zeros_(self.conv2.bn.weight) |
|
|
|
def forward(self, x): |
|
shortcut = x |
|
x = self.conv1(x) |
|
x = self.conv2(x) |
|
if self.attn is not None: |
|
x = self.attn(x) |
|
if self.drop_path is not None: |
|
x = self.drop_path(x) |
|
x = x + shortcut |
|
return x |
|
|
|
|
|
class CrossStage(nn.Module): |
|
"""Cross Stage.""" |
|
def __init__(self, in_chs, out_chs, stride, dilation, depth, block_ratio=1., bottle_ratio=1., exp_ratio=1., |
|
groups=1, first_dilation=None, down_growth=False, cross_linear=False, block_dpr=None, |
|
block_fn=ResBottleneck, **block_kwargs): |
|
super(CrossStage, self).__init__() |
|
first_dilation = first_dilation or dilation |
|
down_chs = out_chs if down_growth else in_chs |
|
exp_chs = int(round(out_chs * exp_ratio)) |
|
block_out_chs = int(round(out_chs * block_ratio)) |
|
conv_kwargs = dict(act_layer=block_kwargs.get('act_layer'), norm_layer=block_kwargs.get('norm_layer')) |
|
|
|
if stride != 1 or first_dilation != dilation: |
|
self.conv_down = ConvBnAct( |
|
in_chs, down_chs, kernel_size=3, stride=stride, dilation=first_dilation, groups=groups, |
|
aa_layer=block_kwargs.get('aa_layer', None), **conv_kwargs) |
|
prev_chs = down_chs |
|
else: |
|
self.conv_down = None |
|
prev_chs = in_chs |
|
|
|
|
|
|
|
|
|
self.conv_exp = ConvBnAct(prev_chs, exp_chs, kernel_size=1, apply_act=not cross_linear, **conv_kwargs) |
|
prev_chs = exp_chs // 2 |
|
|
|
self.blocks = nn.Sequential() |
|
for i in range(depth): |
|
drop_path = DropPath(block_dpr[i]) if block_dpr and block_dpr[i] else None |
|
self.blocks.add_module(str(i), block_fn( |
|
prev_chs, block_out_chs, dilation, bottle_ratio, groups, drop_path=drop_path, **block_kwargs)) |
|
prev_chs = block_out_chs |
|
|
|
|
|
self.conv_transition_b = ConvBnAct(prev_chs, exp_chs // 2, kernel_size=1, **conv_kwargs) |
|
self.conv_transition = ConvBnAct(exp_chs, out_chs, kernel_size=1, **conv_kwargs) |
|
|
|
def forward(self, x): |
|
if self.conv_down is not None: |
|
x = self.conv_down(x) |
|
x = self.conv_exp(x) |
|
split = x.shape[1] // 2 |
|
xs, xb = x[:, :split], x[:, split:] |
|
xb = self.blocks(xb) |
|
xb = self.conv_transition_b(xb).contiguous() |
|
out = self.conv_transition(torch.cat([xs, xb], dim=1)) |
|
return out |
|
|
|
|
|
class DarkStage(nn.Module): |
|
"""DarkNet stage.""" |
|
|
|
def __init__(self, in_chs, out_chs, stride, dilation, depth, block_ratio=1., bottle_ratio=1., groups=1, |
|
first_dilation=None, block_fn=ResBottleneck, block_dpr=None, **block_kwargs): |
|
super(DarkStage, self).__init__() |
|
first_dilation = first_dilation or dilation |
|
|
|
self.conv_down = ConvBnAct( |
|
in_chs, out_chs, kernel_size=3, stride=stride, dilation=first_dilation, groups=groups, |
|
act_layer=block_kwargs.get('act_layer'), norm_layer=block_kwargs.get('norm_layer'), |
|
aa_layer=block_kwargs.get('aa_layer', None)) |
|
|
|
prev_chs = out_chs |
|
block_out_chs = int(round(out_chs * block_ratio)) |
|
self.blocks = nn.Sequential() |
|
for i in range(depth): |
|
drop_path = DropPath(block_dpr[i]) if block_dpr and block_dpr[i] else None |
|
self.blocks.add_module(str(i), block_fn( |
|
prev_chs, block_out_chs, dilation, bottle_ratio, groups, drop_path=drop_path, **block_kwargs)) |
|
prev_chs = block_out_chs |
|
|
|
def forward(self, x): |
|
x = self.conv_down(x) |
|
x = self.blocks(x) |
|
return x |
|
|
|
|
|
def _cfg_to_stage_args(cfg, curr_stride=2, output_stride=32, drop_path_rate=0.): |
|
|
|
num_stages = len(cfg['depth']) |
|
if 'groups' not in cfg: |
|
cfg['groups'] = (1,) * num_stages |
|
if 'down_growth' in cfg and not isinstance(cfg['down_growth'], (list, tuple)): |
|
cfg['down_growth'] = (cfg['down_growth'],) * num_stages |
|
if 'cross_linear' in cfg and not isinstance(cfg['cross_linear'], (list, tuple)): |
|
cfg['cross_linear'] = (cfg['cross_linear'],) * num_stages |
|
cfg['block_dpr'] = [None] * num_stages if not drop_path_rate else \ |
|
[x.tolist() for x in torch.linspace(0, drop_path_rate, sum(cfg['depth'])).split(cfg['depth'])] |
|
stage_strides = [] |
|
stage_dilations = [] |
|
stage_first_dilations = [] |
|
dilation = 1 |
|
for cfg_stride in cfg['stride']: |
|
stage_first_dilations.append(dilation) |
|
if curr_stride >= output_stride: |
|
dilation *= cfg_stride |
|
stride = 1 |
|
else: |
|
stride = cfg_stride |
|
curr_stride *= stride |
|
stage_strides.append(stride) |
|
stage_dilations.append(dilation) |
|
cfg['stride'] = stage_strides |
|
cfg['dilation'] = stage_dilations |
|
cfg['first_dilation'] = stage_first_dilations |
|
stage_args = [dict(zip(cfg.keys(), values)) for values in zip(*cfg.values())] |
|
return stage_args |
|
|
|
|
|
class CspNet(nn.Module): |
|
"""Cross Stage Partial base model. |
|
|
|
Paper: `CSPNet: A New Backbone that can Enhance Learning Capability of CNN` - https://arxiv.org/abs/1911.11929 |
|
Ref Impl: https://github.com/WongKinYiu/CrossStagePartialNetworks |
|
|
|
NOTE: There are differences in the way I handle the 1x1 'expansion' conv in this impl vs the |
|
darknet impl. I did it this way for simplicity and less special cases. |
|
""" |
|
|
|
def __init__(self, cfg, in_chans=3, num_classes=1000, output_stride=32, global_pool='avg', drop_rate=0., |
|
act_layer=nn.LeakyReLU, norm_layer=nn.BatchNorm2d, aa_layer=None, drop_path_rate=0., |
|
zero_init_last_bn=True, stage_fn=CrossStage, block_fn=ResBottleneck): |
|
super().__init__() |
|
self.num_classes = num_classes |
|
self.drop_rate = drop_rate |
|
assert output_stride in (8, 16, 32) |
|
layer_args = dict(act_layer=act_layer, norm_layer=norm_layer, aa_layer=aa_layer) |
|
|
|
|
|
self.stem, stem_feat_info = create_stem(in_chans, **cfg['stem'], **layer_args) |
|
self.feature_info = [stem_feat_info] |
|
prev_chs = stem_feat_info['num_chs'] |
|
curr_stride = stem_feat_info['reduction'] |
|
if cfg['stem']['pool']: |
|
curr_stride *= 2 |
|
|
|
|
|
per_stage_args = _cfg_to_stage_args( |
|
cfg['stage'], curr_stride=curr_stride, output_stride=output_stride, drop_path_rate=drop_path_rate) |
|
self.stages = nn.Sequential() |
|
for i, sa in enumerate(per_stage_args): |
|
self.stages.add_module( |
|
str(i), stage_fn(prev_chs, **sa, **layer_args, block_fn=block_fn)) |
|
prev_chs = sa['out_chs'] |
|
curr_stride *= sa['stride'] |
|
self.feature_info += [dict(num_chs=prev_chs, reduction=curr_stride, module=f'stages.{i}')] |
|
|
|
|
|
self.num_features = prev_chs |
|
self.head = ClassifierHead( |
|
in_chs=prev_chs, num_classes=num_classes, pool_type=global_pool, drop_rate=drop_rate) |
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') |
|
elif isinstance(m, nn.BatchNorm2d): |
|
nn.init.ones_(m.weight) |
|
nn.init.zeros_(m.bias) |
|
elif isinstance(m, nn.Linear): |
|
nn.init.normal_(m.weight, mean=0.0, std=0.01) |
|
nn.init.zeros_(m.bias) |
|
if zero_init_last_bn: |
|
for m in self.modules(): |
|
if hasattr(m, 'zero_init_last_bn'): |
|
m.zero_init_last_bn() |
|
|
|
def get_classifier(self): |
|
return self.head.fc |
|
|
|
def reset_classifier(self, num_classes, global_pool='avg'): |
|
self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate) |
|
|
|
def forward_features(self, x): |
|
x = self.stem(x) |
|
x = self.stages(x) |
|
return x |
|
|
|
def forward(self, x): |
|
x = self.forward_features(x) |
|
x = self.head(x) |
|
return x |
|
|
|
|
|
def _create_cspnet(variant, pretrained=False, **kwargs): |
|
cfg_variant = variant.split('_')[0] |
|
return build_model_with_cfg( |
|
CspNet, variant, pretrained, |
|
default_cfg=default_cfgs[variant], |
|
feature_cfg=dict(flatten_sequential=True), model_cfg=model_cfgs[cfg_variant], |
|
**kwargs) |
|
|
|
|
|
@register_model |
|
def cspresnet50(pretrained=False, **kwargs): |
|
return _create_cspnet('cspresnet50', pretrained=pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def cspresnet50d(pretrained=False, **kwargs): |
|
return _create_cspnet('cspresnet50d', pretrained=pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def cspresnet50w(pretrained=False, **kwargs): |
|
return _create_cspnet('cspresnet50w', pretrained=pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def cspresnext50(pretrained=False, **kwargs): |
|
return _create_cspnet('cspresnext50', pretrained=pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def cspresnext50_iabn(pretrained=False, **kwargs): |
|
norm_layer = get_norm_act_layer('iabn') |
|
return _create_cspnet('cspresnext50_iabn', pretrained=pretrained, norm_layer=norm_layer, **kwargs) |
|
|
|
|
|
@register_model |
|
def cspdarknet53(pretrained=False, **kwargs): |
|
return _create_cspnet('cspdarknet53', pretrained=pretrained, block_fn=DarkBlock, **kwargs) |
|
|
|
|
|
@register_model |
|
def cspdarknet53_iabn(pretrained=False, **kwargs): |
|
norm_layer = get_norm_act_layer('iabn') |
|
return _create_cspnet('cspdarknet53_iabn', pretrained=pretrained, block_fn=DarkBlock, norm_layer=norm_layer, **kwargs) |
|
|
|
|
|
@register_model |
|
def darknet53(pretrained=False, **kwargs): |
|
return _create_cspnet('darknet53', pretrained=pretrained, block_fn=DarkBlock, stage_fn=DarkStage, **kwargs) |
|
|