|
""" Bring-Your-Own-Blocks Network |
|
|
|
A flexible network w/ dataclass based config for stacking those NN blocks. |
|
|
|
This model is currently used to implement the following networks: |
|
|
|
GPU Efficient (ResNets) - gernet_l/m/s (original versions called genet, but this was already used (by SENet author)). |
|
Paper: `Neural Architecture Design for GPU-Efficient Networks` - https://arxiv.org/abs/2006.14090 |
|
Code and weights: https://github.com/idstcv/GPU-Efficient-Networks, licensed Apache 2.0 |
|
|
|
RepVGG - repvgg_* |
|
Paper: `Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697 |
|
Code and weights: https://github.com/DingXiaoH/RepVGG, licensed MIT |
|
|
|
In all cases the models have been modified to fit within the design of ByobNet. I've remapped |
|
the original weights and verified accuracies. |
|
|
|
For GPU Efficient nets, I used the original names for the blocks since they were for the most part |
|
the same as original residual blocks in ResNe(X)t, DarkNet, and other existing models. Note also some |
|
changes introduced in RegNet were also present in the stem and bottleneck blocks for this model. |
|
|
|
A significant number of different network archs can be implemented here, including variants of the |
|
above nets that include attention. |
|
|
|
Hacked together by / copyright Ross Wightman, 2021. |
|
""" |
|
import math |
|
from dataclasses import dataclass, field, replace |
|
from typing import Tuple, List, Dict, Optional, Union, Any, Callable, Sequence |
|
from functools import partial |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD |
|
from .helpers import build_model_with_cfg |
|
from .layers import ClassifierHead, ConvBnAct, BatchNormAct2d, DropPath, AvgPool2dSame, \ |
|
create_conv2d, get_act_layer, convert_norm_act, get_attn, make_divisible, to_2tuple |
|
from .registry import register_model |
|
|
|
__all__ = ['ByobNet', 'ByoModelCfg', 'ByoBlockCfg', 'create_byob_stem', 'create_block'] |
|
|
|
|
|
def _cfg(url='', **kwargs): |
|
return { |
|
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), |
|
'crop_pct': 0.875, 'interpolation': 'bilinear', |
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, |
|
'first_conv': 'stem.conv', 'classifier': 'head.fc', |
|
**kwargs |
|
} |
|
|
|
|
|
default_cfgs = { |
|
|
|
'gernet_s': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-ger-weights/gernet_s-756b4751.pth'), |
|
'gernet_m': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-ger-weights/gernet_m-0873c53a.pth'), |
|
'gernet_l': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-ger-weights/gernet_l-f31e2e8d.pth', |
|
input_size=(3, 256, 256), pool_size=(8, 8)), |
|
|
|
|
|
'repvgg_a2': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-repvgg-weights/repvgg_a2-c1ee6d2b.pth', |
|
first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv')), |
|
'repvgg_b0': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-repvgg-weights/repvgg_b0-80ac3f1b.pth', |
|
first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv')), |
|
'repvgg_b1': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-repvgg-weights/repvgg_b1-77ca2989.pth', |
|
first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv')), |
|
'repvgg_b1g4': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-repvgg-weights/repvgg_b1g4-abde5d92.pth', |
|
first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv')), |
|
'repvgg_b2': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-repvgg-weights/repvgg_b2-25b7494e.pth', |
|
first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv')), |
|
'repvgg_b2g4': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-repvgg-weights/repvgg_b2g4-165a85f2.pth', |
|
first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv')), |
|
'repvgg_b3': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-repvgg-weights/repvgg_b3-199bc50d.pth', |
|
first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv')), |
|
'repvgg_b3g4': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-repvgg-weights/repvgg_b3g4-73c370bf.pth', |
|
first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv')), |
|
|
|
|
|
'resnet51q': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet51q_ra2-d47dcc76.pth', |
|
first_conv='stem.conv1', input_size=(3, 256, 256), pool_size=(8, 8), |
|
test_input_size=(3, 288, 288), crop_pct=1.0), |
|
'resnet61q': _cfg( |
|
first_conv='stem.conv1.conv', input_size=(3, 256, 256), pool_size=(8, 8), interpolation='bicubic'), |
|
'geresnet50t': _cfg( |
|
first_conv='stem.conv1.conv', input_size=(3, 256, 256), pool_size=(8, 8), interpolation='bicubic'), |
|
'gcresnet50t': _cfg( |
|
first_conv='stem.conv1.conv', input_size=(3, 256, 256), pool_size=(8, 8), interpolation='bicubic'), |
|
|
|
'gcresnext26ts': _cfg( |
|
first_conv='stem.conv1.conv', input_size=(3, 256, 256), pool_size=(8, 8), interpolation='bicubic'), |
|
'bat_resnext26ts': _cfg( |
|
first_conv='stem.conv1.conv', input_size=(3, 256, 256), pool_size=(8, 8), interpolation='bicubic', |
|
min_input_size=(3, 256, 256)), |
|
} |
|
|
|
|
|
@dataclass |
|
class ByoBlockCfg: |
|
type: Union[str, nn.Module] |
|
d: int |
|
c: int |
|
s: int = 2 |
|
gs: Optional[Union[int, Callable]] = None |
|
br: float = 1. |
|
|
|
|
|
attn_layer: Optional[str] = None |
|
attn_kwargs: Optional[Dict[str, Any]] = None |
|
self_attn_layer: Optional[str] = None |
|
self_attn_kwargs: Optional[Dict[str, Any]] = None |
|
block_kwargs: Optional[Dict[str, Any]] = None |
|
|
|
|
|
@dataclass |
|
class ByoModelCfg: |
|
blocks: Tuple[Union[ByoBlockCfg, Tuple[ByoBlockCfg, ...]], ...] |
|
downsample: str = 'conv1x1' |
|
stem_type: str = '3x3' |
|
stem_pool: Optional[str] = 'maxpool' |
|
stem_chs: int = 32 |
|
width_factor: float = 1.0 |
|
num_features: int = 0 |
|
zero_init_last_bn: bool = True |
|
fixed_input_size: bool = False |
|
|
|
act_layer: str = 'relu' |
|
norm_layer: str = 'batchnorm' |
|
|
|
|
|
attn_layer: Optional[str] = None |
|
attn_kwargs: dict = field(default_factory=lambda: dict()) |
|
self_attn_layer: Optional[str] = None |
|
self_attn_kwargs: dict = field(default_factory=lambda: dict()) |
|
block_kwargs: Dict[str, Any] = field(default_factory=lambda: dict()) |
|
|
|
|
|
def _rep_vgg_bcfg(d=(4, 6, 16, 1), wf=(1., 1., 1., 1.), groups=0): |
|
c = (64, 128, 256, 512) |
|
group_size = 0 |
|
if groups > 0: |
|
group_size = lambda chs, idx: chs // groups if (idx + 1) % 2 == 0 else 0 |
|
bcfg = tuple([ByoBlockCfg(type='rep', d=d, c=c * wf, gs=group_size) for d, c, wf in zip(d, c, wf)]) |
|
return bcfg |
|
|
|
|
|
def interleave_blocks( |
|
types: Tuple[str, str], every: Union[int, List[int]], d, first: bool = False, **kwargs |
|
) -> Tuple[ByoBlockCfg]: |
|
""" interleave 2 block types in stack |
|
""" |
|
assert len(types) == 2 |
|
if isinstance(every, int): |
|
every = list(range(0 if first else every, d, every)) |
|
if not every: |
|
every = [d - 1] |
|
set(every) |
|
blocks = [] |
|
for i in range(d): |
|
block_type = types[1] if i in every else types[0] |
|
blocks += [ByoBlockCfg(type=block_type, d=1, **kwargs)] |
|
return tuple(blocks) |
|
|
|
|
|
model_cfgs = dict( |
|
gernet_l=ByoModelCfg( |
|
blocks=( |
|
ByoBlockCfg(type='basic', d=1, c=128, s=2, gs=0, br=1.), |
|
ByoBlockCfg(type='basic', d=2, c=192, s=2, gs=0, br=1.), |
|
ByoBlockCfg(type='bottle', d=6, c=640, s=2, gs=0, br=1 / 4), |
|
ByoBlockCfg(type='bottle', d=5, c=640, s=2, gs=1, br=3.), |
|
ByoBlockCfg(type='bottle', d=4, c=640, s=1, gs=1, br=3.), |
|
), |
|
stem_chs=32, |
|
stem_pool=None, |
|
num_features=2560, |
|
), |
|
gernet_m=ByoModelCfg( |
|
blocks=( |
|
ByoBlockCfg(type='basic', d=1, c=128, s=2, gs=0, br=1.), |
|
ByoBlockCfg(type='basic', d=2, c=192, s=2, gs=0, br=1.), |
|
ByoBlockCfg(type='bottle', d=6, c=640, s=2, gs=0, br=1 / 4), |
|
ByoBlockCfg(type='bottle', d=4, c=640, s=2, gs=1, br=3.), |
|
ByoBlockCfg(type='bottle', d=1, c=640, s=1, gs=1, br=3.), |
|
), |
|
stem_chs=32, |
|
stem_pool=None, |
|
num_features=2560, |
|
), |
|
gernet_s=ByoModelCfg( |
|
blocks=( |
|
ByoBlockCfg(type='basic', d=1, c=48, s=2, gs=0, br=1.), |
|
ByoBlockCfg(type='basic', d=3, c=48, s=2, gs=0, br=1.), |
|
ByoBlockCfg(type='bottle', d=7, c=384, s=2, gs=0, br=1 / 4), |
|
ByoBlockCfg(type='bottle', d=2, c=560, s=2, gs=1, br=3.), |
|
ByoBlockCfg(type='bottle', d=1, c=256, s=1, gs=1, br=3.), |
|
), |
|
stem_chs=13, |
|
stem_pool=None, |
|
num_features=1920, |
|
), |
|
|
|
repvgg_a2=ByoModelCfg( |
|
blocks=_rep_vgg_bcfg(d=(2, 4, 14, 1), wf=(1.5, 1.5, 1.5, 2.75)), |
|
stem_type='rep', |
|
stem_chs=64, |
|
), |
|
repvgg_b0=ByoModelCfg( |
|
blocks=_rep_vgg_bcfg(wf=(1., 1., 1., 2.5)), |
|
stem_type='rep', |
|
stem_chs=64, |
|
), |
|
repvgg_b1=ByoModelCfg( |
|
blocks=_rep_vgg_bcfg(wf=(2., 2., 2., 4.)), |
|
stem_type='rep', |
|
stem_chs=64, |
|
), |
|
repvgg_b1g4=ByoModelCfg( |
|
blocks=_rep_vgg_bcfg(wf=(2., 2., 2., 4.), groups=4), |
|
stem_type='rep', |
|
stem_chs=64, |
|
), |
|
repvgg_b2=ByoModelCfg( |
|
blocks=_rep_vgg_bcfg(wf=(2.5, 2.5, 2.5, 5.)), |
|
stem_type='rep', |
|
stem_chs=64, |
|
), |
|
repvgg_b2g4=ByoModelCfg( |
|
blocks=_rep_vgg_bcfg(wf=(2.5, 2.5, 2.5, 5.), groups=4), |
|
stem_type='rep', |
|
stem_chs=64, |
|
), |
|
repvgg_b3=ByoModelCfg( |
|
blocks=_rep_vgg_bcfg(wf=(3., 3., 3., 5.)), |
|
stem_type='rep', |
|
stem_chs=64, |
|
), |
|
repvgg_b3g4=ByoModelCfg( |
|
blocks=_rep_vgg_bcfg(wf=(3., 3., 3., 5.), groups=4), |
|
stem_type='rep', |
|
stem_chs=64, |
|
), |
|
|
|
|
|
resnet51q=ByoModelCfg( |
|
blocks=( |
|
ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=32, br=0.25), |
|
ByoBlockCfg(type='bottle', d=4, c=512, s=2, gs=32, br=0.25), |
|
ByoBlockCfg(type='bottle', d=6, c=1536, s=2, gs=32, br=0.25), |
|
ByoBlockCfg(type='bottle', d=4, c=1536, s=2, gs=1, br=1.0), |
|
), |
|
stem_chs=128, |
|
stem_type='quad2', |
|
stem_pool=None, |
|
num_features=2048, |
|
act_layer='silu', |
|
), |
|
|
|
resnet61q=ByoModelCfg( |
|
blocks=( |
|
ByoBlockCfg(type='edge', d=1, c=256, s=1, gs=0, br=1.0, block_kwargs=dict()), |
|
ByoBlockCfg(type='bottle', d=4, c=512, s=2, gs=32, br=0.25), |
|
ByoBlockCfg(type='bottle', d=6, c=1536, s=2, gs=32, br=0.25), |
|
ByoBlockCfg(type='bottle', d=4, c=1536, s=2, gs=1, br=1.0), |
|
), |
|
stem_chs=128, |
|
stem_type='quad', |
|
stem_pool=None, |
|
num_features=2048, |
|
act_layer='silu', |
|
block_kwargs=dict(extra_conv=True), |
|
), |
|
|
|
|
|
geresnet50t=ByoModelCfg( |
|
blocks=( |
|
ByoBlockCfg(type='edge', d=3, c=256, s=1, br=0.25), |
|
ByoBlockCfg(type='edge', d=4, c=512, s=2, br=0.25), |
|
ByoBlockCfg(type='bottle', d=6, c=1024, s=2, br=0.25), |
|
ByoBlockCfg(type='bottle', d=3, c=2048, s=2, br=0.25), |
|
), |
|
stem_chs=64, |
|
stem_type='tiered', |
|
stem_pool=None, |
|
attn_layer='ge', |
|
attn_kwargs=dict(extent=8, extra_params=True), |
|
|
|
|
|
), |
|
|
|
|
|
gcresnet50t=ByoModelCfg( |
|
blocks=( |
|
ByoBlockCfg(type='bottle', d=3, c=256, s=1, br=0.25), |
|
ByoBlockCfg(type='bottle', d=4, c=512, s=2, br=0.25), |
|
ByoBlockCfg(type='bottle', d=6, c=1024, s=2, br=0.25), |
|
ByoBlockCfg(type='bottle', d=3, c=2048, s=2, br=0.25), |
|
), |
|
stem_chs=64, |
|
stem_type='tiered', |
|
stem_pool=None, |
|
attn_layer='gc' |
|
), |
|
|
|
gcresnext26ts=ByoModelCfg( |
|
blocks=( |
|
ByoBlockCfg(type='bottle', d=3, c=256, s=1, gs=32, br=0.25), |
|
ByoBlockCfg(type='bottle', d=4, c=512, s=2, gs=32, br=0.25), |
|
ByoBlockCfg(type='bottle', d=6, c=1024, s=2, gs=32, br=0.25), |
|
ByoBlockCfg(type='bottle', d=3, c=2048, s=2, gs=32, br=0.25), |
|
), |
|
stem_chs=64, |
|
stem_type='tiered', |
|
stem_pool='maxpool', |
|
num_features=0, |
|
act_layer='silu', |
|
attn_layer='gc', |
|
), |
|
|
|
bat_resnext26ts=ByoModelCfg( |
|
blocks=( |
|
ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=32, br=0.25), |
|
ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=32, br=0.25), |
|
ByoBlockCfg(type='bottle', d=2, c=1024, s=2, gs=32, br=0.25), |
|
ByoBlockCfg(type='bottle', d=2, c=2048, s=2, gs=32, br=0.25), |
|
), |
|
stem_chs=64, |
|
stem_type='tiered', |
|
stem_pool='maxpool', |
|
num_features=0, |
|
act_layer='silu', |
|
attn_layer='bat', |
|
attn_kwargs=dict(block_size=8) |
|
), |
|
) |
|
|
|
|
|
@register_model |
|
def gernet_l(pretrained=False, **kwargs): |
|
""" GEResNet-Large (GENet-Large from official impl) |
|
`Neural Architecture Design for GPU-Efficient Networks` - https://arxiv.org/abs/2006.14090 |
|
""" |
|
return _create_byobnet('gernet_l', pretrained=pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def gernet_m(pretrained=False, **kwargs): |
|
""" GEResNet-Medium (GENet-Normal from official impl) |
|
`Neural Architecture Design for GPU-Efficient Networks` - https://arxiv.org/abs/2006.14090 |
|
""" |
|
return _create_byobnet('gernet_m', pretrained=pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def gernet_s(pretrained=False, **kwargs): |
|
""" EResNet-Small (GENet-Small from official impl) |
|
`Neural Architecture Design for GPU-Efficient Networks` - https://arxiv.org/abs/2006.14090 |
|
""" |
|
return _create_byobnet('gernet_s', pretrained=pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def repvgg_a2(pretrained=False, **kwargs): |
|
""" RepVGG-A2 |
|
`Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697 |
|
""" |
|
return _create_byobnet('repvgg_a2', pretrained=pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def repvgg_b0(pretrained=False, **kwargs): |
|
""" RepVGG-B0 |
|
`Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697 |
|
""" |
|
return _create_byobnet('repvgg_b0', pretrained=pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def repvgg_b1(pretrained=False, **kwargs): |
|
""" RepVGG-B1 |
|
`Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697 |
|
""" |
|
return _create_byobnet('repvgg_b1', pretrained=pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def repvgg_b1g4(pretrained=False, **kwargs): |
|
""" RepVGG-B1g4 |
|
`Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697 |
|
""" |
|
return _create_byobnet('repvgg_b1g4', pretrained=pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def repvgg_b2(pretrained=False, **kwargs): |
|
""" RepVGG-B2 |
|
`Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697 |
|
""" |
|
return _create_byobnet('repvgg_b2', pretrained=pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def repvgg_b2g4(pretrained=False, **kwargs): |
|
""" RepVGG-B2g4 |
|
`Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697 |
|
""" |
|
return _create_byobnet('repvgg_b2g4', pretrained=pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def repvgg_b3(pretrained=False, **kwargs): |
|
""" RepVGG-B3 |
|
`Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697 |
|
""" |
|
return _create_byobnet('repvgg_b3', pretrained=pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def repvgg_b3g4(pretrained=False, **kwargs): |
|
""" RepVGG-B3g4 |
|
`Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697 |
|
""" |
|
return _create_byobnet('repvgg_b3g4', pretrained=pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def resnet51q(pretrained=False, **kwargs): |
|
""" |
|
""" |
|
return _create_byobnet('resnet51q', pretrained=pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def resnet61q(pretrained=False, **kwargs): |
|
""" |
|
""" |
|
return _create_byobnet('resnet61q', pretrained=pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def geresnet50t(pretrained=False, **kwargs): |
|
""" |
|
""" |
|
return _create_byobnet('geresnet50t', pretrained=pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def gcresnet50t(pretrained=False, **kwargs): |
|
""" |
|
""" |
|
return _create_byobnet('gcresnet50t', pretrained=pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def gcresnext26ts(pretrained=False, **kwargs): |
|
""" |
|
""" |
|
return _create_byobnet('gcresnext26ts', pretrained=pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def bat_resnext26ts(pretrained=False, **kwargs): |
|
""" |
|
""" |
|
return _create_byobnet('bat_resnext26ts', pretrained=pretrained, **kwargs) |
|
|
|
|
|
def expand_blocks_cfg(stage_blocks_cfg: Union[ByoBlockCfg, Sequence[ByoBlockCfg]]) -> List[ByoBlockCfg]: |
|
if not isinstance(stage_blocks_cfg, Sequence): |
|
stage_blocks_cfg = (stage_blocks_cfg,) |
|
block_cfgs = [] |
|
for i, cfg in enumerate(stage_blocks_cfg): |
|
block_cfgs += [replace(cfg, d=1) for _ in range(cfg.d)] |
|
return block_cfgs |
|
|
|
|
|
def num_groups(group_size, channels): |
|
if not group_size: |
|
return 1 |
|
else: |
|
|
|
assert channels % group_size == 0 |
|
return channels // group_size |
|
|
|
|
|
@dataclass |
|
class LayerFn: |
|
conv_norm_act: Callable = ConvBnAct |
|
norm_act: Callable = BatchNormAct2d |
|
act: Callable = nn.ReLU |
|
attn: Optional[Callable] = None |
|
self_attn: Optional[Callable] = None |
|
|
|
|
|
class DownsampleAvg(nn.Module): |
|
def __init__(self, in_chs, out_chs, stride=1, dilation=1, apply_act=False, layers: LayerFn = None): |
|
""" AvgPool Downsampling as in 'D' ResNet variants.""" |
|
super(DownsampleAvg, self).__init__() |
|
layers = layers or LayerFn() |
|
avg_stride = stride if dilation == 1 else 1 |
|
if stride > 1 or dilation > 1: |
|
avg_pool_fn = AvgPool2dSame if avg_stride == 1 and dilation > 1 else nn.AvgPool2d |
|
self.pool = avg_pool_fn(2, avg_stride, ceil_mode=True, count_include_pad=False) |
|
else: |
|
self.pool = nn.Identity() |
|
self.conv = layers.conv_norm_act(in_chs, out_chs, 1, apply_act=apply_act) |
|
|
|
def forward(self, x): |
|
return self.conv(self.pool(x)) |
|
|
|
|
|
def create_downsample(downsample_type, layers: LayerFn, **kwargs): |
|
if downsample_type == 'avg': |
|
return DownsampleAvg(**kwargs) |
|
else: |
|
return layers.conv_norm_act(kwargs.pop('in_chs'), kwargs.pop('out_chs'), kernel_size=1, **kwargs) |
|
|
|
|
|
class BasicBlock(nn.Module): |
|
""" ResNet Basic Block - kxk + kxk |
|
""" |
|
|
|
def __init__( |
|
self, in_chs, out_chs, kernel_size=3, stride=1, dilation=(1, 1), group_size=None, bottle_ratio=1.0, |
|
downsample='avg', attn_last=True, linear_out=False, layers: LayerFn = None, drop_block=None, |
|
drop_path_rate=0.): |
|
super(BasicBlock, self).__init__() |
|
layers = layers or LayerFn() |
|
mid_chs = make_divisible(out_chs * bottle_ratio) |
|
groups = num_groups(group_size, mid_chs) |
|
|
|
if in_chs != out_chs or stride != 1 or dilation[0] != dilation[1]: |
|
self.shortcut = create_downsample( |
|
downsample, in_chs=in_chs, out_chs=out_chs, stride=stride, dilation=dilation[0], |
|
apply_act=False, layers=layers) |
|
else: |
|
self.shortcut = nn.Identity() |
|
|
|
self.conv1_kxk = layers.conv_norm_act(in_chs, mid_chs, kernel_size, stride=stride, dilation=dilation[0]) |
|
self.attn = nn.Identity() if attn_last or layers.attn is None else layers.attn(mid_chs) |
|
self.conv2_kxk = layers.conv_norm_act( |
|
mid_chs, out_chs, kernel_size, dilation=dilation[1], groups=groups, drop_block=drop_block, apply_act=False) |
|
self.attn_last = nn.Identity() if not attn_last or layers.attn is None else layers.attn(out_chs) |
|
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity() |
|
self.act = nn.Identity() if linear_out else layers.act(inplace=True) |
|
|
|
def init_weights(self, zero_init_last_bn: bool = False): |
|
if zero_init_last_bn: |
|
nn.init.zeros_(self.conv2_kxk.bn.weight) |
|
for attn in (self.attn, self.attn_last): |
|
if hasattr(attn, 'reset_parameters'): |
|
attn.reset_parameters() |
|
|
|
def forward(self, x): |
|
shortcut = self.shortcut(x) |
|
|
|
|
|
x = self.conv1_kxk(x) |
|
x = self.conv2_kxk(x) |
|
x = self.attn(x) |
|
x = self.drop_path(x) |
|
|
|
x = self.act(x + shortcut) |
|
return x |
|
|
|
|
|
class BottleneckBlock(nn.Module): |
|
""" ResNet-like Bottleneck Block - 1x1 - kxk - 1x1 |
|
""" |
|
|
|
def __init__(self, in_chs, out_chs, kernel_size=3, stride=1, dilation=(1, 1), bottle_ratio=1., group_size=None, |
|
downsample='avg', attn_last=False, linear_out=False, extra_conv=False, layers: LayerFn = None, |
|
drop_block=None, drop_path_rate=0.): |
|
super(BottleneckBlock, self).__init__() |
|
layers = layers or LayerFn() |
|
mid_chs = make_divisible(out_chs * bottle_ratio) |
|
groups = num_groups(group_size, mid_chs) |
|
|
|
if in_chs != out_chs or stride != 1 or dilation[0] != dilation[1]: |
|
self.shortcut = create_downsample( |
|
downsample, in_chs=in_chs, out_chs=out_chs, stride=stride, dilation=dilation[0], |
|
apply_act=False, layers=layers) |
|
else: |
|
self.shortcut = nn.Identity() |
|
|
|
self.conv1_1x1 = layers.conv_norm_act(in_chs, mid_chs, 1) |
|
self.conv2_kxk = layers.conv_norm_act( |
|
mid_chs, mid_chs, kernel_size, stride=stride, dilation=dilation[0], |
|
groups=groups, drop_block=drop_block) |
|
self.conv2_kxk = layers.conv_norm_act( |
|
mid_chs, mid_chs, kernel_size, stride=stride, dilation=dilation[0], |
|
groups=groups, drop_block=drop_block) |
|
if extra_conv: |
|
self.conv2b_kxk = layers.conv_norm_act( |
|
mid_chs, mid_chs, kernel_size, dilation=dilation[1], groups=groups, drop_block=drop_block) |
|
else: |
|
self.conv2b_kxk = nn.Identity() |
|
self.attn = nn.Identity() if attn_last or layers.attn is None else layers.attn(mid_chs) |
|
self.conv3_1x1 = layers.conv_norm_act(mid_chs, out_chs, 1, apply_act=False) |
|
self.attn_last = nn.Identity() if not attn_last or layers.attn is None else layers.attn(out_chs) |
|
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity() |
|
self.act = nn.Identity() if linear_out else layers.act(inplace=True) |
|
|
|
def init_weights(self, zero_init_last_bn: bool = False): |
|
if zero_init_last_bn: |
|
nn.init.zeros_(self.conv3_1x1.bn.weight) |
|
for attn in (self.attn, self.attn_last): |
|
if hasattr(attn, 'reset_parameters'): |
|
attn.reset_parameters() |
|
|
|
def forward(self, x): |
|
shortcut = self.shortcut(x) |
|
|
|
x = self.conv1_1x1(x) |
|
x = self.conv2_kxk(x) |
|
x = self.conv2b_kxk(x) |
|
x = self.attn(x) |
|
x = self.conv3_1x1(x) |
|
x = self.attn_last(x) |
|
x = self.drop_path(x) |
|
|
|
x = self.act(x + shortcut) |
|
return x |
|
|
|
|
|
class DarkBlock(nn.Module): |
|
""" DarkNet-like (1x1 + 3x3 w/ stride) block |
|
|
|
The GE-Net impl included a 1x1 + 3x3 block in their search space. It was not used in the feature models. |
|
This block is pretty much a DarkNet block (also DenseNet) hence the name. Neither DarkNet or DenseNet |
|
uses strides within the block (external 3x3 or maxpool downsampling is done in front of the block repeats). |
|
|
|
If one does want to use a lot of these blocks w/ stride, I'd recommend using the EdgeBlock (3x3 /w stride + 1x1) |
|
for more optimal compute. |
|
""" |
|
|
|
def __init__(self, in_chs, out_chs, kernel_size=3, stride=1, dilation=(1, 1), bottle_ratio=1.0, group_size=None, |
|
downsample='avg', attn_last=True, linear_out=False, layers: LayerFn = None, drop_block=None, |
|
drop_path_rate=0.): |
|
super(DarkBlock, self).__init__() |
|
layers = layers or LayerFn() |
|
mid_chs = make_divisible(out_chs * bottle_ratio) |
|
groups = num_groups(group_size, mid_chs) |
|
|
|
if in_chs != out_chs or stride != 1 or dilation[0] != dilation[1]: |
|
self.shortcut = create_downsample( |
|
downsample, in_chs=in_chs, out_chs=out_chs, stride=stride, dilation=dilation[0], |
|
apply_act=False, layers=layers) |
|
else: |
|
self.shortcut = nn.Identity() |
|
|
|
self.conv1_1x1 = layers.conv_norm_act(in_chs, mid_chs, 1) |
|
self.attn = nn.Identity() if attn_last or layers.attn is None else layers.attn(mid_chs) |
|
self.conv2_kxk = layers.conv_norm_act( |
|
mid_chs, out_chs, kernel_size, stride=stride, dilation=dilation[0], |
|
groups=groups, drop_block=drop_block, apply_act=False) |
|
self.attn_last = nn.Identity() if not attn_last or layers.attn is None else layers.attn(out_chs) |
|
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity() |
|
self.act = nn.Identity() if linear_out else layers.act(inplace=True) |
|
|
|
def init_weights(self, zero_init_last_bn: bool = False): |
|
if zero_init_last_bn: |
|
nn.init.zeros_(self.conv2_kxk.bn.weight) |
|
for attn in (self.attn, self.attn_last): |
|
if hasattr(attn, 'reset_parameters'): |
|
attn.reset_parameters() |
|
|
|
def forward(self, x): |
|
shortcut = self.shortcut(x) |
|
|
|
x = self.conv1_1x1(x) |
|
x = self.attn(x) |
|
x = self.conv2_kxk(x) |
|
x = self.attn_last(x) |
|
x = self.drop_path(x) |
|
x = self.act(x + shortcut) |
|
return x |
|
|
|
|
|
class EdgeBlock(nn.Module): |
|
""" EdgeResidual-like (3x3 + 1x1) block |
|
|
|
A two layer block like DarkBlock, but with the order of the 3x3 and 1x1 convs reversed. |
|
Very similar to the EfficientNet Edge-Residual block but this block it ends with activations, is |
|
intended to be used with either expansion or bottleneck contraction, and can use DW/group/non-grouped convs. |
|
|
|
FIXME is there a more common 3x3 + 1x1 conv block to name this after? |
|
""" |
|
|
|
def __init__(self, in_chs, out_chs, kernel_size=3, stride=1, dilation=(1, 1), bottle_ratio=1.0, group_size=None, |
|
downsample='avg', attn_last=False, linear_out=False, layers: LayerFn = None, |
|
drop_block=None, drop_path_rate=0.): |
|
super(EdgeBlock, self).__init__() |
|
layers = layers or LayerFn() |
|
mid_chs = make_divisible(out_chs * bottle_ratio) |
|
groups = num_groups(group_size, mid_chs) |
|
|
|
if in_chs != out_chs or stride != 1 or dilation[0] != dilation[1]: |
|
self.shortcut = create_downsample( |
|
downsample, in_chs=in_chs, out_chs=out_chs, stride=stride, dilation=dilation[0], |
|
apply_act=False, layers=layers) |
|
else: |
|
self.shortcut = nn.Identity() |
|
|
|
self.conv1_kxk = layers.conv_norm_act( |
|
in_chs, mid_chs, kernel_size, stride=stride, dilation=dilation[0], |
|
groups=groups, drop_block=drop_block) |
|
self.attn = nn.Identity() if attn_last or layers.attn is None else layers.attn(mid_chs) |
|
self.conv2_1x1 = layers.conv_norm_act(mid_chs, out_chs, 1, apply_act=False) |
|
self.attn_last = nn.Identity() if not attn_last or layers.attn is None else layers.attn(out_chs) |
|
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity() |
|
self.act = nn.Identity() if linear_out else layers.act(inplace=True) |
|
|
|
def init_weights(self, zero_init_last_bn: bool = False): |
|
if zero_init_last_bn: |
|
nn.init.zeros_(self.conv2_1x1.bn.weight) |
|
for attn in (self.attn, self.attn_last): |
|
if hasattr(attn, 'reset_parameters'): |
|
attn.reset_parameters() |
|
|
|
def forward(self, x): |
|
shortcut = self.shortcut(x) |
|
|
|
x = self.conv1_kxk(x) |
|
x = self.attn(x) |
|
x = self.conv2_1x1(x) |
|
x = self.attn_last(x) |
|
x = self.drop_path(x) |
|
x = self.act(x + shortcut) |
|
return x |
|
|
|
|
|
class RepVggBlock(nn.Module): |
|
""" RepVGG Block. |
|
|
|
Adapted from impl at https://github.com/DingXiaoH/RepVGG |
|
|
|
This version does not currently support the deploy optimization. It is currently fixed in 'train' mode. |
|
""" |
|
|
|
def __init__(self, in_chs, out_chs, kernel_size=3, stride=1, dilation=(1, 1), bottle_ratio=1.0, group_size=None, |
|
downsample='', layers: LayerFn = None, drop_block=None, drop_path_rate=0.): |
|
super(RepVggBlock, self).__init__() |
|
layers = layers or LayerFn() |
|
groups = num_groups(group_size, in_chs) |
|
|
|
use_ident = in_chs == out_chs and stride == 1 and dilation[0] == dilation[1] |
|
self.identity = layers.norm_act(out_chs, apply_act=False) if use_ident else None |
|
self.conv_kxk = layers.conv_norm_act( |
|
in_chs, out_chs, kernel_size, stride=stride, dilation=dilation[0], |
|
groups=groups, drop_block=drop_block, apply_act=False) |
|
self.conv_1x1 = layers.conv_norm_act(in_chs, out_chs, 1, stride=stride, groups=groups, apply_act=False) |
|
self.attn = nn.Identity() if layers.attn is None else layers.attn(out_chs) |
|
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. and use_ident else nn.Identity() |
|
self.act = layers.act(inplace=True) |
|
|
|
def init_weights(self, zero_init_last_bn: bool = False): |
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.BatchNorm2d): |
|
nn.init.normal_(m.weight, .1, .1) |
|
nn.init.normal_(m.bias, 0, .1) |
|
if hasattr(self.attn, 'reset_parameters'): |
|
self.attn.reset_parameters() |
|
|
|
def forward(self, x): |
|
if self.identity is None: |
|
x = self.conv_1x1(x) + self.conv_kxk(x) |
|
else: |
|
identity = self.identity(x) |
|
x = self.conv_1x1(x) + self.conv_kxk(x) |
|
x = self.drop_path(x) |
|
x = x + identity |
|
x = self.attn(x) |
|
x = self.act(x) |
|
return x |
|
|
|
|
|
class SelfAttnBlock(nn.Module): |
|
""" ResNet-like Bottleneck Block - 1x1 - optional kxk - self attn - 1x1 |
|
""" |
|
|
|
def __init__(self, in_chs, out_chs, kernel_size=3, stride=1, dilation=(1, 1), bottle_ratio=1., group_size=None, |
|
downsample='avg', extra_conv=False, linear_out=False, post_attn_na=True, feat_size=None, |
|
layers: LayerFn = None, drop_block=None, drop_path_rate=0.): |
|
super(SelfAttnBlock, self).__init__() |
|
assert layers is not None |
|
mid_chs = make_divisible(out_chs * bottle_ratio) |
|
groups = num_groups(group_size, mid_chs) |
|
|
|
if in_chs != out_chs or stride != 1 or dilation[0] != dilation[1]: |
|
self.shortcut = create_downsample( |
|
downsample, in_chs=in_chs, out_chs=out_chs, stride=stride, dilation=dilation[0], |
|
apply_act=False, layers=layers) |
|
else: |
|
self.shortcut = nn.Identity() |
|
|
|
self.conv1_1x1 = layers.conv_norm_act(in_chs, mid_chs, 1) |
|
if extra_conv: |
|
self.conv2_kxk = layers.conv_norm_act( |
|
mid_chs, mid_chs, kernel_size, stride=stride, dilation=dilation[0], |
|
groups=groups, drop_block=drop_block) |
|
stride = 1 |
|
else: |
|
self.conv2_kxk = nn.Identity() |
|
opt_kwargs = {} if feat_size is None else dict(feat_size=feat_size) |
|
|
|
self.self_attn = layers.self_attn(mid_chs, stride=stride, **opt_kwargs) |
|
self.post_attn = layers.norm_act(mid_chs) if post_attn_na else nn.Identity() |
|
self.conv3_1x1 = layers.conv_norm_act(mid_chs, out_chs, 1, apply_act=False) |
|
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity() |
|
self.act = nn.Identity() if linear_out else layers.act(inplace=True) |
|
|
|
def init_weights(self, zero_init_last_bn: bool = False): |
|
if zero_init_last_bn: |
|
nn.init.zeros_(self.conv3_1x1.bn.weight) |
|
if hasattr(self.self_attn, 'reset_parameters'): |
|
self.self_attn.reset_parameters() |
|
|
|
def forward(self, x): |
|
shortcut = self.shortcut(x) |
|
|
|
x = self.conv1_1x1(x) |
|
x = self.conv2_kxk(x) |
|
x = self.self_attn(x) |
|
x = self.post_attn(x) |
|
x = self.conv3_1x1(x) |
|
x = self.drop_path(x) |
|
|
|
x = self.act(x + shortcut) |
|
return x |
|
|
|
|
|
_block_registry = dict( |
|
basic=BasicBlock, |
|
bottle=BottleneckBlock, |
|
dark=DarkBlock, |
|
edge=EdgeBlock, |
|
rep=RepVggBlock, |
|
self_attn=SelfAttnBlock, |
|
) |
|
|
|
|
|
def register_block(block_type:str, block_fn: nn.Module): |
|
_block_registry[block_type] = block_fn |
|
|
|
|
|
def create_block(block: Union[str, nn.Module], **kwargs): |
|
if isinstance(block, (nn.Module, partial)): |
|
return block(**kwargs) |
|
assert block in _block_registry, f'Unknown block type ({block}' |
|
return _block_registry[block](**kwargs) |
|
|
|
|
|
class Stem(nn.Sequential): |
|
|
|
def __init__(self, in_chs, out_chs, kernel_size=3, stride=4, pool='maxpool', |
|
num_rep=3, num_act=None, chs_decay=0.5, layers: LayerFn = None): |
|
super().__init__() |
|
assert stride in (2, 4) |
|
layers = layers or LayerFn() |
|
|
|
if isinstance(out_chs, (list, tuple)): |
|
num_rep = len(out_chs) |
|
stem_chs = out_chs |
|
else: |
|
stem_chs = [round(out_chs * chs_decay ** i) for i in range(num_rep)][::-1] |
|
|
|
self.stride = stride |
|
self.feature_info = [] |
|
prev_feat = '' |
|
stem_strides = [2] + [1] * (num_rep - 1) |
|
if stride == 4 and not pool: |
|
|
|
stem_strides[-1] = 2 |
|
|
|
num_act = num_rep if num_act is None else num_act |
|
|
|
stem_norm_acts = [False] * (num_rep - num_act) + [True] * num_act |
|
prev_chs = in_chs |
|
curr_stride = 1 |
|
for i, (ch, s, na) in enumerate(zip(stem_chs, stem_strides, stem_norm_acts)): |
|
layer_fn = layers.conv_norm_act if na else create_conv2d |
|
conv_name = f'conv{i + 1}' |
|
if i > 0 and s > 1: |
|
self.feature_info.append(dict(num_chs=prev_chs, reduction=curr_stride, module=prev_feat)) |
|
self.add_module(conv_name, layer_fn(prev_chs, ch, kernel_size=kernel_size, stride=s)) |
|
prev_chs = ch |
|
curr_stride *= s |
|
prev_feat = conv_name |
|
|
|
if pool and 'max' in pool.lower(): |
|
self.feature_info.append(dict(num_chs=prev_chs, reduction=curr_stride, module=prev_feat)) |
|
self.add_module('pool', nn.MaxPool2d(3, 2, 1)) |
|
curr_stride *= 2 |
|
prev_feat = 'pool' |
|
|
|
self.feature_info.append(dict(num_chs=prev_chs, reduction=curr_stride, module=prev_feat)) |
|
assert curr_stride == stride |
|
|
|
|
|
def create_byob_stem(in_chs, out_chs, stem_type='', pool_type='', feat_prefix='stem', layers: LayerFn = None): |
|
layers = layers or LayerFn() |
|
assert stem_type in ('', 'quad', 'quad2', 'tiered', 'deep', 'rep', '7x7', '3x3') |
|
if 'quad' in stem_type: |
|
|
|
num_act = 2 if 'quad2' in stem_type else None |
|
stem = Stem(in_chs, out_chs, num_rep=4, num_act=num_act, pool=pool_type, layers=layers) |
|
elif 'tiered' in stem_type: |
|
|
|
stem = Stem(in_chs, (3 * out_chs // 8, out_chs // 2, out_chs), pool=pool_type, layers=layers) |
|
elif 'deep' in stem_type: |
|
|
|
stem = Stem(in_chs, out_chs, num_rep=3, chs_decay=1.0, pool=pool_type, layers=layers) |
|
elif 'rep' in stem_type: |
|
stem = RepVggBlock(in_chs, out_chs, stride=2, layers=layers) |
|
elif '7x7' in stem_type: |
|
|
|
if pool_type: |
|
stem = Stem(in_chs, out_chs, 7, num_rep=1, pool=pool_type, layers=layers) |
|
else: |
|
stem = layers.conv_norm_act(in_chs, out_chs, 7, stride=2) |
|
else: |
|
|
|
if pool_type: |
|
stem = Stem(in_chs, out_chs, 3, num_rep=1, pool=pool_type, layers=layers) |
|
else: |
|
stem = layers.conv_norm_act(in_chs, out_chs, 3, stride=2) |
|
|
|
if isinstance(stem, Stem): |
|
feature_info = [dict(f, module='.'.join([feat_prefix, f['module']])) for f in stem.feature_info] |
|
else: |
|
feature_info = [dict(num_chs=out_chs, reduction=2, module=feat_prefix)] |
|
return stem, feature_info |
|
|
|
|
|
def reduce_feat_size(feat_size, stride=2): |
|
return None if feat_size is None else tuple([s // stride for s in feat_size]) |
|
|
|
|
|
def override_kwargs(block_kwargs, model_kwargs): |
|
""" Override model level attn/self-attn/block kwargs w/ block level |
|
|
|
NOTE: kwargs are NOT merged across levels, block_kwargs will fully replace model_kwargs |
|
for the block if set to anything that isn't None. |
|
|
|
i.e. an empty block_kwargs dict will remove kwargs set at model level for that block |
|
""" |
|
out_kwargs = block_kwargs if block_kwargs is not None else model_kwargs |
|
return out_kwargs or {} |
|
|
|
|
|
def update_block_kwargs(block_kwargs: Dict[str, Any], block_cfg: ByoBlockCfg, model_cfg: ByoModelCfg, ): |
|
layer_fns = block_kwargs['layers'] |
|
|
|
|
|
if block_cfg.attn_kwargs is not None or block_cfg.attn_layer is not None: |
|
|
|
if not block_cfg.attn_layer: |
|
|
|
attn_layer = None |
|
else: |
|
attn_kwargs = override_kwargs(block_cfg.attn_kwargs, model_cfg.attn_kwargs) |
|
attn_layer = block_cfg.attn_layer or model_cfg.attn_layer |
|
attn_layer = partial(get_attn(attn_layer), *attn_kwargs) if attn_layer is not None else None |
|
layer_fns = replace(layer_fns, attn=attn_layer) |
|
|
|
|
|
if block_cfg.self_attn_kwargs is not None or block_cfg.self_attn_layer is not None: |
|
|
|
if not block_cfg.self_attn_layer: |
|
|
|
self_attn_layer = None |
|
else: |
|
self_attn_kwargs = override_kwargs(block_cfg.self_attn_kwargs, model_cfg.self_attn_kwargs) |
|
self_attn_layer = block_cfg.self_attn_layer or model_cfg.self_attn_layer |
|
self_attn_layer = partial(get_attn(self_attn_layer), *self_attn_kwargs) \ |
|
if self_attn_layer is not None else None |
|
layer_fns = replace(layer_fns, self_attn=self_attn_layer) |
|
|
|
block_kwargs['layers'] = layer_fns |
|
|
|
|
|
block_kwargs.update(override_kwargs(block_cfg.block_kwargs, model_cfg.block_kwargs)) |
|
|
|
|
|
def create_byob_stages( |
|
cfg: ByoModelCfg, drop_path_rate: float, output_stride: int, stem_feat: Dict[str, Any], |
|
feat_size: Optional[int] = None, |
|
layers: Optional[LayerFn] = None, |
|
block_kwargs_fn: Optional[Callable] = update_block_kwargs): |
|
|
|
layers = layers or LayerFn() |
|
feature_info = [] |
|
block_cfgs = [expand_blocks_cfg(s) for s in cfg.blocks] |
|
depths = [sum([bc.d for bc in stage_bcs]) for stage_bcs in block_cfgs] |
|
dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] |
|
dilation = 1 |
|
net_stride = stem_feat['reduction'] |
|
prev_chs = stem_feat['num_chs'] |
|
prev_feat = stem_feat |
|
stages = [] |
|
for stage_idx, stage_block_cfgs in enumerate(block_cfgs): |
|
stride = stage_block_cfgs[0].s |
|
if stride != 1 and prev_feat: |
|
feature_info.append(prev_feat) |
|
if net_stride >= output_stride and stride > 1: |
|
dilation *= stride |
|
stride = 1 |
|
net_stride *= stride |
|
first_dilation = 1 if dilation in (1, 2) else 2 |
|
|
|
blocks = [] |
|
for block_idx, block_cfg in enumerate(stage_block_cfgs): |
|
out_chs = make_divisible(block_cfg.c * cfg.width_factor) |
|
group_size = block_cfg.gs |
|
if isinstance(group_size, Callable): |
|
group_size = group_size(out_chs, block_idx) |
|
block_kwargs = dict( |
|
in_chs=prev_chs, |
|
out_chs=out_chs, |
|
stride=stride if block_idx == 0 else 1, |
|
dilation=(first_dilation, dilation), |
|
group_size=group_size, |
|
bottle_ratio=block_cfg.br, |
|
downsample=cfg.downsample, |
|
drop_path_rate=dpr[stage_idx][block_idx], |
|
layers=layers, |
|
) |
|
if block_cfg.type in ('self_attn',): |
|
|
|
block_kwargs['feat_size'] = feat_size |
|
block_kwargs_fn(block_kwargs, block_cfg=block_cfg, model_cfg=cfg) |
|
blocks += [create_block(block_cfg.type, **block_kwargs)] |
|
first_dilation = dilation |
|
prev_chs = out_chs |
|
if stride > 1 and block_idx == 0: |
|
feat_size = reduce_feat_size(feat_size, stride) |
|
|
|
stages += [nn.Sequential(*blocks)] |
|
prev_feat = dict(num_chs=prev_chs, reduction=net_stride, module=f'stages.{stage_idx}') |
|
|
|
feature_info.append(prev_feat) |
|
return nn.Sequential(*stages), feature_info |
|
|
|
|
|
def get_layer_fns(cfg: ByoModelCfg): |
|
act = get_act_layer(cfg.act_layer) |
|
norm_act = convert_norm_act(norm_layer=cfg.norm_layer, act_layer=act) |
|
conv_norm_act = partial(ConvBnAct, norm_layer=cfg.norm_layer, act_layer=act) |
|
attn = partial(get_attn(cfg.attn_layer), **cfg.attn_kwargs) if cfg.attn_layer else None |
|
self_attn = partial(get_attn(cfg.self_attn_layer), **cfg.self_attn_kwargs) if cfg.self_attn_layer else None |
|
layer_fn = LayerFn(conv_norm_act=conv_norm_act, norm_act=norm_act, act=act, attn=attn, self_attn=self_attn) |
|
return layer_fn |
|
|
|
|
|
class ByobNet(nn.Module): |
|
""" 'Bring-your-own-blocks' Net |
|
|
|
A flexible network backbone that allows building model stem + blocks via |
|
dataclass cfg definition w/ factory functions for module instantiation. |
|
|
|
Current assumption is that both stem and blocks are in conv-bn-act order (w/ block ending in act). |
|
""" |
|
def __init__(self, cfg: ByoModelCfg, num_classes=1000, in_chans=3, global_pool='avg', output_stride=32, |
|
zero_init_last_bn=True, img_size=None, drop_rate=0., drop_path_rate=0.): |
|
super().__init__() |
|
self.num_classes = num_classes |
|
self.drop_rate = drop_rate |
|
layers = get_layer_fns(cfg) |
|
if cfg.fixed_input_size: |
|
assert img_size is not None, 'img_size argument is required for fixed input size model' |
|
feat_size = to_2tuple(img_size) if img_size is not None else None |
|
|
|
self.feature_info = [] |
|
stem_chs = int(round((cfg.stem_chs or cfg.blocks[0].c) * cfg.width_factor)) |
|
self.stem, stem_feat = create_byob_stem(in_chans, stem_chs, cfg.stem_type, cfg.stem_pool, layers=layers) |
|
self.feature_info.extend(stem_feat[:-1]) |
|
feat_size = reduce_feat_size(feat_size, stride=stem_feat[-1]['reduction']) |
|
|
|
self.stages, stage_feat = create_byob_stages( |
|
cfg, drop_path_rate, output_stride, stem_feat[-1], layers=layers, feat_size=feat_size) |
|
self.feature_info.extend(stage_feat[:-1]) |
|
|
|
prev_chs = stage_feat[-1]['num_chs'] |
|
if cfg.num_features: |
|
self.num_features = int(round(cfg.width_factor * cfg.num_features)) |
|
self.final_conv = layers.conv_norm_act(prev_chs, self.num_features, 1) |
|
else: |
|
self.num_features = prev_chs |
|
self.final_conv = nn.Identity() |
|
self.feature_info += [ |
|
dict(num_chs=self.num_features, reduction=stage_feat[-1]['reduction'], module='final_conv')] |
|
|
|
self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate) |
|
|
|
for n, m in self.named_modules(): |
|
_init_weights(m, n) |
|
for m in self.modules(): |
|
|
|
if hasattr(m, 'init_weights'): |
|
m.init_weights(zero_init_last_bn=zero_init_last_bn) |
|
|
|
def get_classifier(self): |
|
return self.head.fc |
|
|
|
def reset_classifier(self, num_classes, global_pool='avg'): |
|
self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate) |
|
|
|
def forward_features(self, x): |
|
x = self.stem(x) |
|
x = self.stages(x) |
|
x = self.final_conv(x) |
|
return x |
|
|
|
def forward(self, x): |
|
x = self.forward_features(x) |
|
x = self.head(x) |
|
return x |
|
|
|
|
|
def _init_weights(m, n=''): |
|
if isinstance(m, nn.Conv2d): |
|
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels |
|
fan_out //= m.groups |
|
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) |
|
if m.bias is not None: |
|
m.bias.data.zero_() |
|
elif isinstance(m, nn.Linear): |
|
nn.init.normal_(m.weight, mean=0.0, std=0.01) |
|
if m.bias is not None: |
|
nn.init.zeros_(m.bias) |
|
elif isinstance(m, nn.BatchNorm2d): |
|
nn.init.ones_(m.weight) |
|
nn.init.zeros_(m.bias) |
|
|
|
|
|
def _create_byobnet(variant, pretrained=False, **kwargs): |
|
return build_model_with_cfg( |
|
ByobNet, variant, pretrained, |
|
default_cfg=default_cfgs[variant], |
|
model_cfg=model_cfgs[variant], |
|
feature_cfg=dict(flatten_sequential=True), |
|
**kwargs) |
|
|