File size: 17,427 Bytes
80187e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
""" ConvNeXt

Paper: `A ConvNet for the 2020s` - https://arxiv.org/pdf/2201.03545.pdf

Original code and weights from https://github.com/facebookresearch/ConvNeXt, original copyright below

Modifications and additions for timm hacked together by / Copyright 2022, Ross Wightman
"""
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the MIT license
from collections import OrderedDict
from functools import partial

import torch
import torch.nn as nn
import torch.nn.functional as F

from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from .fx_features import register_notrace_module
from .helpers import named_apply, build_model_with_cfg
from .layers import trunc_normal_, ClassifierHead, SelectAdaptivePool2d, DropPath, ConvMlp, Mlp
from .registry import register_model


__all__ = ['ConvNeXt']  # model_registry will add each entrypoint fn to this


def _cfg(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
        'crop_pct': 0.875, 'interpolation': 'bicubic',
        'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
        'first_conv': 'stem.0', 'classifier': 'head.fc',
        **kwargs
    }


default_cfgs = dict(
    convnext_tiny=_cfg(url="https://dl.fbaipublicfiles.com/convnext/convnext_tiny_1k_224_ema.pth"),
    convnext_small=_cfg(url="https://dl.fbaipublicfiles.com/convnext/convnext_small_1k_224_ema.pth"),
    convnext_base=_cfg(url="https://dl.fbaipublicfiles.com/convnext/convnext_base_1k_224_ema.pth"),
    convnext_large=_cfg(url="https://dl.fbaipublicfiles.com/convnext/convnext_large_1k_224_ema.pth"),

    convnext_tiny_hnf=_cfg(url=''),

    convnext_base_in22ft1k=_cfg(
        url='https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_1k_224.pth'),
    convnext_large_in22ft1k=_cfg(
        url='https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_1k_224.pth'),
    convnext_xlarge_in22ft1k=_cfg(
        url='https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_1k_224_ema.pth'),

    convnext_base_384_in22ft1k=_cfg(
        url='https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_1k_384.pth',
        input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0),
    convnext_large_384_in22ft1k=_cfg(
        url='https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_1k_384.pth',
        input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0),
    convnext_xlarge_384_in22ft1k=_cfg(
        url='https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_1k_384_ema.pth',
        input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0),

    convnext_base_in22k=_cfg(
        url="https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_224.pth", num_classes=21841),
    convnext_large_in22k=_cfg(
        url="https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_224.pth", num_classes=21841),
    convnext_xlarge_in22k=_cfg(
        url="https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_224.pth", num_classes=21841),
)


def _is_contiguous(tensor: torch.Tensor) -> bool:
    # jit is oh so lovely :/
    # if torch.jit.is_tracing():
    #     return True
    if torch.jit.is_scripting():
        return tensor.is_contiguous()
    else:
        return tensor.is_contiguous(memory_format=torch.contiguous_format)


@register_notrace_module
class LayerNorm2d(nn.LayerNorm):
    r""" LayerNorm for channels_first tensors with 2d spatial dimensions (ie N, C, H, W).
    """

    def __init__(self, normalized_shape, eps=1e-6):
        super().__init__(normalized_shape, eps=eps)

    def forward(self, x) -> torch.Tensor:
        if _is_contiguous(x):
            return F.layer_norm(
                x.permute(0, 2, 3, 1), self.normalized_shape, self.weight, self.bias, self.eps).permute(0, 3, 1, 2)
        else:
            s, u = torch.var_mean(x, dim=1, keepdim=True)
            x = (x - u) * torch.rsqrt(s + self.eps)
            x = x * self.weight[:, None, None] + self.bias[:, None, None]
            return x


class ConvNeXtBlock(nn.Module):
    """ ConvNeXt Block
    There are two equivalent implementations:
      (1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
      (2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back

    Unlike the official impl, this one allows choice of 1 or 2, 1x1 conv can be faster with appropriate
    choice of LayerNorm impl, however as model size increases the tradeoffs appear to change and nn.Linear
    is a better choice. This was observed with PyTorch 1.10 on 3090 GPU, it could change over time & w/ different HW.

    Args:
        dim (int): Number of input channels.
        drop_path (float): Stochastic depth rate. Default: 0.0
        ls_init_value (float): Init value for Layer Scale. Default: 1e-6.
    """

    def __init__(self, dim, drop_path=0., ls_init_value=1e-6, conv_mlp=False, mlp_ratio=4, norm_layer=None):
        super().__init__()
        if not norm_layer:
            norm_layer = partial(LayerNorm2d, eps=1e-6) if conv_mlp else partial(nn.LayerNorm, eps=1e-6)
        mlp_layer = ConvMlp if conv_mlp else Mlp
        self.use_conv_mlp = conv_mlp
        self.conv_dw = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim)  # depthwise conv
        self.norm = norm_layer(dim)
        self.mlp = mlp_layer(dim, int(mlp_ratio * dim), act_layer=nn.GELU)
        self.gamma = nn.Parameter(ls_init_value * torch.ones(dim)) if ls_init_value > 0 else None
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()

    def forward(self, x):
        shortcut = x
        x = self.conv_dw(x)
        if self.use_conv_mlp:
            x = self.norm(x)
            x = self.mlp(x)
        else:
            x = x.permute(0, 2, 3, 1)
            x = self.norm(x)
            x = self.mlp(x)
            x = x.permute(0, 3, 1, 2)
        if self.gamma is not None:
            x = x.mul(self.gamma.reshape(1, -1, 1, 1))
        x = self.drop_path(x) + shortcut
        return x


class ConvNeXtStage(nn.Module):

    def __init__(
            self, in_chs, out_chs, stride=2, depth=2, dp_rates=None, ls_init_value=1.0, conv_mlp=False,
            norm_layer=None, cl_norm_layer=None, cross_stage=False):
        super().__init__()

        if in_chs != out_chs or stride > 1:
            self.downsample = nn.Sequential(
                norm_layer(in_chs),
                nn.Conv2d(in_chs, out_chs, kernel_size=stride, stride=stride),
            )
        else:
            self.downsample = nn.Identity()

        dp_rates = dp_rates or [0.] * depth
        self.blocks = nn.Sequential(*[ConvNeXtBlock(
            dim=out_chs, drop_path=dp_rates[j], ls_init_value=ls_init_value, conv_mlp=conv_mlp,
            norm_layer=norm_layer if conv_mlp else cl_norm_layer)
            for j in range(depth)]
        )

    def forward(self, x):
        x = self.downsample(x)
        x = self.blocks(x)
        return x


class ConvNeXt(nn.Module):
    r""" ConvNeXt
        A PyTorch impl of : `A ConvNet for the 2020s`  - https://arxiv.org/pdf/2201.03545.pdf

    Args:
        in_chans (int): Number of input image channels. Default: 3
        num_classes (int): Number of classes for classification head. Default: 1000
        depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3]
        dims (tuple(int)): Feature dimension at each stage. Default: [96, 192, 384, 768]
        drop_rate (float): Head dropout rate
        drop_path_rate (float): Stochastic depth rate. Default: 0.
        ls_init_value (float): Init value for Layer Scale. Default: 1e-6.
        head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1.
    """

    def __init__(
            self, in_chans=3, num_classes=1000, global_pool='avg', output_stride=32, patch_size=4,
            depths=(3, 3, 9, 3), dims=(96, 192, 384, 768),  ls_init_value=1e-6, conv_mlp=False,
            head_init_scale=1., head_norm_first=False, norm_layer=None, drop_rate=0., drop_path_rate=0.,
    ):
        super().__init__()
        assert output_stride == 32
        if norm_layer is None:
            norm_layer = partial(LayerNorm2d, eps=1e-6)
            cl_norm_layer = norm_layer if conv_mlp else partial(nn.LayerNorm, eps=1e-6)
        else:
            assert conv_mlp,\
                'If a norm_layer is specified, conv MLP must be used so all norm expect rank-4, channels-first input'
            cl_norm_layer = norm_layer

        self.num_classes = num_classes
        self.drop_rate = drop_rate
        self.feature_info = []

        # NOTE: this stem is a minimal form of ViT PatchEmbed, as used in SwinTransformer w/ patch_size = 4
        self.stem = nn.Sequential(
            nn.Conv2d(in_chans, dims[0], kernel_size=patch_size, stride=patch_size),
            norm_layer(dims[0])
        )

        self.stages = nn.Sequential()
        dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)]
        curr_stride = patch_size
        prev_chs = dims[0]
        stages = []
        # 4 feature resolution stages, each consisting of multiple residual blocks
        for i in range(4):
            stride = 2 if i > 0 else 1
            # FIXME support dilation / output_stride
            curr_stride *= stride
            out_chs = dims[i]
            stages.append(ConvNeXtStage(
                prev_chs, out_chs, stride=stride,
                depth=depths[i], dp_rates=dp_rates[i], ls_init_value=ls_init_value, conv_mlp=conv_mlp,
                norm_layer=norm_layer, cl_norm_layer=cl_norm_layer)
            )
            prev_chs = out_chs
            # NOTE feature_info use currently assumes stage 0 == stride 1, rest are stride 2
            self.feature_info += [dict(num_chs=prev_chs, reduction=curr_stride, module=f'stages.{i}')]
        self.stages = nn.Sequential(*stages)

        self.num_features = prev_chs
        if head_norm_first:
            # norm -> global pool -> fc ordering, like most other nets (not compat with FB weights)
            self.norm_pre = norm_layer(self.num_features)  # final norm layer, before pooling
            self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=drop_rate)
        else:
            # pool -> norm -> fc, the default ConvNeXt ordering (pretrained FB weights)
            self.norm_pre = nn.Identity()
            self.head = nn.Sequential(OrderedDict([
                ('global_pool', SelectAdaptivePool2d(pool_type=global_pool)),
                ('norm', norm_layer(self.num_features)),
                ('flatten', nn.Flatten(1) if global_pool else nn.Identity()),
                ('drop', nn.Dropout(self.drop_rate)),
                ('fc', nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity())
            ]))

        named_apply(partial(_init_weights, head_init_scale=head_init_scale), self)

    def get_classifier(self):
        return self.head.fc

    def reset_classifier(self, num_classes=0, global_pool='avg'):
        if isinstance(self.head, ClassifierHead):
            # norm -> global pool -> fc
            self.head = ClassifierHead(
                self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate)
        else:
            # pool -> norm -> fc
            self.head = nn.Sequential(OrderedDict([
                ('global_pool', SelectAdaptivePool2d(pool_type=global_pool)),
                ('norm', self.head.norm),
                ('flatten', nn.Flatten(1) if global_pool else nn.Identity()),
                ('drop', nn.Dropout(self.drop_rate)),
                ('fc', nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity())
            ]))

    def forward_features(self, x):
        x = self.stem(x)
        x = self.stages(x)
        x = self.norm_pre(x)
        return x

    def forward(self, x):
        x = self.forward_features(x)
        x = self.head(x)
        return x


def _init_weights(module, name=None, head_init_scale=1.0):
    if isinstance(module, nn.Conv2d):
        trunc_normal_(module.weight, std=.02)
        nn.init.constant_(module.bias, 0)
    elif isinstance(module, nn.Linear):
        trunc_normal_(module.weight, std=.02)
        nn.init.constant_(module.bias, 0)
        if name and 'head.' in name:
            module.weight.data.mul_(head_init_scale)
            module.bias.data.mul_(head_init_scale)


def checkpoint_filter_fn(state_dict, model):
    """ Remap FB checkpoints -> timm """
    if 'model' in state_dict:
        state_dict = state_dict['model']
    out_dict = {}
    import re
    for k, v in state_dict.items():
        k = k.replace('downsample_layers.0.', 'stem.')
        k = re.sub(r'stages.([0-9]+).([0-9]+)', r'stages.\1.blocks.\2', k)
        k = re.sub(r'downsample_layers.([0-9]+).([0-9]+)', r'stages.\1.downsample.\2', k)
        k = k.replace('dwconv', 'conv_dw')
        k = k.replace('pwconv', 'mlp.fc')
        k = k.replace('head.', 'head.fc.')
        if k.startswith('norm.'):
            k = k.replace('norm', 'head.norm')
        if v.ndim == 2 and 'head' not in k:
            model_shape = model.state_dict()[k].shape
            v = v.reshape(model_shape)
        out_dict[k] = v
    return out_dict


def _create_convnext(variant, pretrained=False, **kwargs):
    model = build_model_with_cfg(
        ConvNeXt, variant, pretrained,
        default_cfg=default_cfgs[variant],
        pretrained_filter_fn=checkpoint_filter_fn,
        feature_cfg=dict(out_indices=(0, 1, 2, 3), flatten_sequential=True),
        **kwargs)
    return model


@register_model
def convnext_tiny(pretrained=False, **kwargs):
    model_args = dict(depths=(3, 3, 9, 3), dims=(96, 192, 384, 768), **kwargs)
    model = _create_convnext('convnext_tiny', pretrained=pretrained, **model_args)
    return model


@register_model
def convnext_tiny_hnf(pretrained=False, **kwargs):
    model_args = dict(depths=(3, 3, 9, 3), dims=(96, 192, 384, 768), head_norm_first=True, **kwargs)
    model = _create_convnext('convnext_tiny_hnf', pretrained=pretrained, **model_args)
    return model


@register_model
def convnext_small(pretrained=False, **kwargs):
    model_args = dict(depths=[3, 3, 27, 3], dims=[96, 192, 384, 768], **kwargs)
    model = _create_convnext('convnext_small', pretrained=pretrained, **model_args)
    return model


@register_model
def convnext_base(pretrained=False, **kwargs):
    model_args = dict(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], **kwargs)
    model = _create_convnext('convnext_base', pretrained=pretrained, **model_args)
    return model


@register_model
def convnext_large(pretrained=False, **kwargs):
    model_args = dict(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], **kwargs)
    model = _create_convnext('convnext_large', pretrained=pretrained, **model_args)
    return model


@register_model
def convnext_base_in22ft1k(pretrained=False, **kwargs):
    model_args = dict(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], **kwargs)
    model = _create_convnext('convnext_base_in22ft1k', pretrained=pretrained, **model_args)
    return model


@register_model
def convnext_large_in22ft1k(pretrained=False, **kwargs):
    model_args = dict(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], **kwargs)
    model = _create_convnext('convnext_large_in22ft1k', pretrained=pretrained, **model_args)
    return model


@register_model
def convnext_xlarge_in22ft1k(pretrained=False, **kwargs):
    model_args = dict(depths=[3, 3, 27, 3], dims=[256, 512, 1024, 2048], **kwargs)
    model = _create_convnext('convnext_xlarge_in22ft1k', pretrained=pretrained, **model_args)
    return model


@register_model
def convnext_base_384_in22ft1k(pretrained=False, **kwargs):
    model_args = dict(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], **kwargs)
    model = _create_convnext('convnext_base_384_in22ft1k', pretrained=pretrained, **model_args)
    return model


@register_model
def convnext_large_384_in22ft1k(pretrained=False, **kwargs):
    model_args = dict(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], **kwargs)
    model = _create_convnext('convnext_large_384_in22ft1k', pretrained=pretrained, **model_args)
    return model


@register_model
def convnext_xlarge_384_in22ft1k(pretrained=False, **kwargs):
    model_args = dict(depths=[3, 3, 27, 3], dims=[256, 512, 1024, 2048], **kwargs)
    model = _create_convnext('convnext_xlarge_384_in22ft1k', pretrained=pretrained, **model_args)
    return model


@register_model
def convnext_base_in22k(pretrained=False, **kwargs):
    model_args = dict(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], **kwargs)
    model = _create_convnext('convnext_base_in22k', pretrained=pretrained, **model_args)
    return model


@register_model
def convnext_large_in22k(pretrained=False, **kwargs):
    model_args = dict(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], **kwargs)
    model = _create_convnext('convnext_large_in22k', pretrained=pretrained, **model_args)
    return model


@register_model
def convnext_xlarge_in22k(pretrained=False, **kwargs):
    model_args = dict(depths=[3, 3, 27, 3], dims=[256, 512, 1024, 2048], **kwargs)
    model = _create_convnext('convnext_xlarge_in22k', pretrained=pretrained, **model_args)
    return model