Upload 3 files
Browse files- app.py +239 -0
- pim_module.py +573 -0
- requirements.txt +9 -0
app.py
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gdown
|
2 |
+
import os
|
3 |
+
import torch
|
4 |
+
import requests
|
5 |
+
import numpy as np
|
6 |
+
import numpy.matlib
|
7 |
+
import copy
|
8 |
+
import cv2
|
9 |
+
from PIL import Image
|
10 |
+
from typing import List
|
11 |
+
import timm
|
12 |
+
import gradio as gr
|
13 |
+
import torchvision.transforms as transforms
|
14 |
+
|
15 |
+
from pim_module import PluginMoodel # Assure-toi que ce fichier est présent
|
16 |
+
|
17 |
+
# === Téléchargement automatique depuis Google Drive ===
|
18 |
+
if not os.path.exists("weights.pt"):
|
19 |
+
print("Téléchargement des poids depuis Google Drive avec gdown...")
|
20 |
+
file_id = "15yqHRLQM_oEfp1Byo_0IpzYqRFRmJlui"
|
21 |
+
url = f"https://drive.google.com/uc?id={file_id}"
|
22 |
+
gdown.download(url, "weights.pt", quiet=False)
|
23 |
+
|
24 |
+
|
25 |
+
|
26 |
+
# === Classes
|
27 |
+
classes_list = [
|
28 |
+
"Ferrage_Et_Accessoires_Anti_Fausse_Manoeuvre",
|
29 |
+
"Ferrage_Et_Accessoires_Busettes",
|
30 |
+
"Ferrage_Et_Accessoires_Butees",
|
31 |
+
"Ferrage_Et_Accessoires_Chariots",
|
32 |
+
"Ferrage_Et_Accessoires_Charniere",
|
33 |
+
"Ferrage_Et_Accessoires_Compas_limiteur",
|
34 |
+
"Ferrage_Et_Accessoires_Cylindres",
|
35 |
+
"Ferrage_Et_Accessoires_Gaches",
|
36 |
+
"Ferrage_Et_Accessoires_Renvois_D_Angle",
|
37 |
+
"Joints_Et_Consommables_Equerres_Aluminium_Moulees",
|
38 |
+
"Joints_Et_Consommables_Visserie_Inox_Alu",
|
39 |
+
"Poignee_Carre_7_mm",
|
40 |
+
"Poignee_Carre_8_mm",
|
41 |
+
"Poignee_Cremone",
|
42 |
+
"Poignee_Cuvette",
|
43 |
+
"Poignee_De_Tirage",
|
44 |
+
"Poignee_Pour_Levant_Coulissant",
|
45 |
+
"Serrure_Cremone_Multipoints",
|
46 |
+
"Serrure_Cuvette",
|
47 |
+
"Serrure_Gaches",
|
48 |
+
"Serrure_Loqueteau",
|
49 |
+
"Serrure_Pene_Crochet",
|
50 |
+
"Serrure_Pour_Porte",
|
51 |
+
"Serrure_Tringles"
|
52 |
+
]
|
53 |
+
|
54 |
+
short_classes_list = [
|
55 |
+
"Anti-fausse-manoeuvre",
|
56 |
+
"Busettes",
|
57 |
+
"Butées",
|
58 |
+
"Chariots",
|
59 |
+
"Charnière",
|
60 |
+
"Compas-limiteur",
|
61 |
+
"Renvois d'angle",
|
62 |
+
"Cylindres",
|
63 |
+
"Gaches",
|
64 |
+
"Equerres aluminium moulées",
|
65 |
+
"Visserie inox alu",
|
66 |
+
"Poignée carré 7 mm",
|
67 |
+
"Poignée carré 8 mm",
|
68 |
+
"Poignée crémone",
|
69 |
+
"Poignée cuvette",
|
70 |
+
"Poignée de tirage",
|
71 |
+
"Poignée pour levant coulissant",
|
72 |
+
"Serrure crémone multipoints",
|
73 |
+
"Serrure cuvette",
|
74 |
+
"Serrure gaches",
|
75 |
+
"Serrure pene crochet",
|
76 |
+
"Serrure pour porte",
|
77 |
+
"Serrure tringles",
|
78 |
+
"Loqueteau",
|
79 |
+
]
|
80 |
+
|
81 |
+
data_size = 384
|
82 |
+
fpn_size = 1536
|
83 |
+
num_classes = 23
|
84 |
+
num_selects = {'layer1': 256, 'layer2': 128, 'layer3': 64, 'layer4': 32}
|
85 |
+
features, grads, module_id_mapper = {}, {}, {}
|
86 |
+
|
87 |
+
def forward_hook(module, inp_hs, out_hs):
|
88 |
+
layer_id = len(features) + 1
|
89 |
+
module_id_mapper[module] = layer_id
|
90 |
+
features[layer_id] = {"in": inp_hs, "out": out_hs}
|
91 |
+
|
92 |
+
def backward_hook(module, inp_grad, out_grad):
|
93 |
+
layer_id = module_id_mapper[module]
|
94 |
+
grads[layer_id] = {"in": inp_grad, "out": out_grad}
|
95 |
+
|
96 |
+
def build_model(path: str):
|
97 |
+
backbone = timm.create_model('swin_large_patch4_window12_384_in22k', pretrained=True)
|
98 |
+
model = PluginMoodel(
|
99 |
+
backbone=backbone,
|
100 |
+
return_nodes=None,
|
101 |
+
img_size=data_size,
|
102 |
+
use_fpn=True,
|
103 |
+
fpn_size=fpn_size,
|
104 |
+
proj_type="Linear",
|
105 |
+
upsample_type="Conv",
|
106 |
+
use_selection=True,
|
107 |
+
num_classes=num_classes,
|
108 |
+
num_selects=num_selects,
|
109 |
+
use_combiner=True,
|
110 |
+
comb_proj_size=None
|
111 |
+
)
|
112 |
+
ckpt = torch.load(path, map_location="cpu", weights_only=False)
|
113 |
+
model.load_state_dict(ckpt["model"], strict=False)
|
114 |
+
model.eval()
|
115 |
+
|
116 |
+
for layer in [0, 1, 2, 3]:
|
117 |
+
model.backbone.layers[layer].register_forward_hook(forward_hook)
|
118 |
+
model.backbone.layers[layer].register_full_backward_hook(backward_hook)
|
119 |
+
|
120 |
+
for i in range(1, 5):
|
121 |
+
getattr(model.fpn_down, f'Proj_layer{i}').register_forward_hook(forward_hook)
|
122 |
+
getattr(model.fpn_down, f'Proj_layer{i}').register_full_backward_hook(backward_hook)
|
123 |
+
getattr(model.fpn_up, f'Proj_layer{i}').register_forward_hook(forward_hook)
|
124 |
+
getattr(model.fpn_up, f'Proj_layer{i}').register_full_backward_hook(backward_hook)
|
125 |
+
|
126 |
+
return model
|
127 |
+
|
128 |
+
class ImgLoader:
|
129 |
+
def __init__(self, img_size):
|
130 |
+
self.transform = transforms.Compose([
|
131 |
+
transforms.Resize((510, 510), Image.BILINEAR),
|
132 |
+
transforms.CenterCrop((img_size, img_size)),
|
133 |
+
transforms.ToTensor(),
|
134 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
135 |
+
])
|
136 |
+
|
137 |
+
def load(self, input_img):
|
138 |
+
if isinstance(input_img, str):
|
139 |
+
ori_img = cv2.imread(input_img)
|
140 |
+
img = Image.fromarray(cv2.cvtColor(ori_img, cv2.COLOR_BGR2RGB))
|
141 |
+
elif isinstance(input_img, Image.Image):
|
142 |
+
img = input_img
|
143 |
+
else:
|
144 |
+
raise ValueError("Image invalide")
|
145 |
+
|
146 |
+
if img.mode != "RGB":
|
147 |
+
img = img.convert("RGB")
|
148 |
+
|
149 |
+
return self.transform(img).unsqueeze(0)
|
150 |
+
|
151 |
+
def cal_backward(out) -> dict:
|
152 |
+
target_layer_names = ['layer1', 'layer2', 'layer3', 'layer4',
|
153 |
+
'FPN1_layer1', 'FPN1_layer2', 'FPN1_layer3', 'FPN1_layer4', 'comb_outs']
|
154 |
+
|
155 |
+
sum_out = None
|
156 |
+
for name in target_layer_names:
|
157 |
+
tmp_out = out[name].mean(1) if name != "comb_outs" else out[name]
|
158 |
+
tmp_out = torch.softmax(tmp_out, dim=-1)
|
159 |
+
sum_out = tmp_out if sum_out is None else sum_out + tmp_out
|
160 |
+
|
161 |
+
with torch.no_grad():
|
162 |
+
smax = torch.softmax(sum_out, dim=-1)
|
163 |
+
A = np.transpose(np.matlib.repmat(smax[0], num_classes, 1)) - np.eye(num_classes)
|
164 |
+
_, _, V = np.linalg.svd(A, full_matrices=True)
|
165 |
+
V = V[num_classes - 1, :]
|
166 |
+
if V[0] < 0:
|
167 |
+
V = -V
|
168 |
+
V = np.log(V)
|
169 |
+
V = V - min(V)
|
170 |
+
V = V / sum(V)
|
171 |
+
|
172 |
+
top5_indices = np.argsort(-V)[:5]
|
173 |
+
top5_scores = -np.sort(-V)[:5]
|
174 |
+
|
175 |
+
# Construction du dictionnaire pour gr.Label
|
176 |
+
top5_dict = {classes_list[int(idx)]: float(f"{score:.4f}") for idx, score in zip(top5_indices, top5_scores)}
|
177 |
+
return top5_dict
|
178 |
+
|
179 |
+
# === Chargement du modèle
|
180 |
+
model = build_model("weights.pt")
|
181 |
+
img_loader = ImgLoader(data_size)
|
182 |
+
|
183 |
+
|
184 |
+
|
185 |
+
def predict_image(image: Image.Image):
|
186 |
+
global features, grads, module_id_mapper
|
187 |
+
features, grads, module_id_mapper = {}, {}, {}
|
188 |
+
|
189 |
+
if image is None:
|
190 |
+
return {}
|
191 |
+
# raise ValueError("Aucune image reçue. Vérifie l'entrée.")
|
192 |
+
|
193 |
+
if image.mode != "RGB":
|
194 |
+
image = image.convert("RGB")
|
195 |
+
|
196 |
+
image_path = "temp.jpg"
|
197 |
+
image.save(image_path)
|
198 |
+
|
199 |
+
img_tensor = img_loader.load(image_path)
|
200 |
+
out = model(img_tensor)
|
201 |
+
top5_dict = cal_backward(out) # {classe: score}
|
202 |
+
|
203 |
+
gallery_outputs = []
|
204 |
+
for idx, class_name in enumerate(list(top5_dict.keys())):
|
205 |
+
images = [
|
206 |
+
(f"imgs/{class_name}/{class_name}_0001.jpg", f"Exemple {class_name} 1"),
|
207 |
+
(f"imgs/{class_name}/{class_name}_0002.jpg", f"Exemple {class_name} 2"),
|
208 |
+
(f"imgs/{class_name}/{class_name}_0003.jpg", f"Exemple {class_name} 3"),
|
209 |
+
]
|
210 |
+
gallery_outputs.append(images)
|
211 |
+
|
212 |
+
return top5_dict, *gallery_outputs
|
213 |
+
|
214 |
+
|
215 |
+
# === Interface Gradio
|
216 |
+
with gr.Blocks(css="""
|
217 |
+
.gr-image-upload { display: none !important }
|
218 |
+
.gallery-container .gr-box { height: auto !important; padding: 0 !important; }
|
219 |
+
""") as demo:
|
220 |
+
with gr.Row():
|
221 |
+
with gr.Column(scale=1):
|
222 |
+
with gr.Tab("Téléversement"):
|
223 |
+
image_input_upload = gr.Image(type="pil", label="Image à classer (upload)", sources=["upload"])
|
224 |
+
with gr.Tab("Webcam"):
|
225 |
+
image_input_webcam = gr.Image(type="pil", label="Image à classer (webcam)", sources=["webcam"])
|
226 |
+
|
227 |
+
with gr.Column(scale=1.5):
|
228 |
+
label_output = gr.Label(label="Prédictions")
|
229 |
+
gallery_outputs = [
|
230 |
+
gr.Gallery(label=f"", columns=3, height=300, container=True, elem_classes=["gallery-container"])
|
231 |
+
for i in range(5)
|
232 |
+
]
|
233 |
+
|
234 |
+
image_input_upload.change(fn=predict_image, inputs=image_input_upload, outputs=[label_output] + gallery_outputs)
|
235 |
+
image_input_webcam.change(fn=predict_image, inputs=image_input_webcam, outputs=[label_output] + gallery_outputs)
|
236 |
+
|
237 |
+
if __name__ == "__main__":
|
238 |
+
demo.launch()
|
239 |
+
|
pim_module.py
ADDED
@@ -0,0 +1,573 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torchvision.models as models
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from torchvision.models.feature_extraction import get_graph_node_names
|
6 |
+
from torchvision.models.feature_extraction import create_feature_extractor
|
7 |
+
from typing import Union
|
8 |
+
import copy
|
9 |
+
|
10 |
+
class GCNCombiner(nn.Module):
|
11 |
+
|
12 |
+
def __init__(self,
|
13 |
+
total_num_selects: int,
|
14 |
+
num_classes: int,
|
15 |
+
inputs: Union[dict, None] = None,
|
16 |
+
proj_size: Union[int, None] = None,
|
17 |
+
fpn_size: Union[int, None] = None):
|
18 |
+
"""
|
19 |
+
If building backbone without FPN, set fpn_size to None and MUST give
|
20 |
+
'inputs' and 'proj_size', the reason of these setting is to constrain the
|
21 |
+
dimension of graph convolutional network input.
|
22 |
+
"""
|
23 |
+
super(GCNCombiner, self).__init__()
|
24 |
+
|
25 |
+
assert inputs is not None or fpn_size is not None, \
|
26 |
+
"To build GCN combiner, you must give one features dimension."
|
27 |
+
|
28 |
+
### auto-proj
|
29 |
+
self.fpn_size = fpn_size
|
30 |
+
if fpn_size is None:
|
31 |
+
for name in inputs:
|
32 |
+
if len(name) == 4:
|
33 |
+
in_size = inputs[name].size(1)
|
34 |
+
elif len(name) == 3:
|
35 |
+
in_size = inputs[name].size(2)
|
36 |
+
else:
|
37 |
+
raise ValusError("The size of output dimension of previous must be 3 or 4.")
|
38 |
+
m = nn.Sequential(
|
39 |
+
nn.Linear(in_size, proj_size),
|
40 |
+
nn.ReLU(),
|
41 |
+
nn.Linear(proj_size, proj_size)
|
42 |
+
)
|
43 |
+
self.add_module("proj_"+name, m)
|
44 |
+
self.proj_size = proj_size
|
45 |
+
else:
|
46 |
+
self.proj_size = fpn_size
|
47 |
+
|
48 |
+
### build one layer structure (with adaptive module)
|
49 |
+
num_joints = total_num_selects // 64
|
50 |
+
|
51 |
+
self.param_pool0 = nn.Linear(total_num_selects, num_joints)
|
52 |
+
|
53 |
+
A = torch.eye(num_joints) / 100 + 1 / 100
|
54 |
+
self.adj1 = nn.Parameter(copy.deepcopy(A))
|
55 |
+
self.conv1 = nn.Conv1d(self.proj_size, self.proj_size, 1)
|
56 |
+
self.batch_norm1 = nn.BatchNorm1d(self.proj_size)
|
57 |
+
|
58 |
+
self.conv_q1 = nn.Conv1d(self.proj_size, self.proj_size//4, 1)
|
59 |
+
self.conv_k1 = nn.Conv1d(self.proj_size, self.proj_size//4, 1)
|
60 |
+
self.alpha1 = nn.Parameter(torch.zeros(1))
|
61 |
+
|
62 |
+
### merge information
|
63 |
+
self.param_pool1 = nn.Linear(num_joints, 1)
|
64 |
+
|
65 |
+
#### class predict
|
66 |
+
self.dropout = nn.Dropout(p=0.1)
|
67 |
+
self.classifier = nn.Linear(self.proj_size, num_classes)
|
68 |
+
|
69 |
+
self.tanh = nn.Tanh()
|
70 |
+
|
71 |
+
def forward(self, x):
|
72 |
+
"""
|
73 |
+
"""
|
74 |
+
hs = []
|
75 |
+
names = []
|
76 |
+
for name in x:
|
77 |
+
if "FPN1_" in name:
|
78 |
+
continue
|
79 |
+
if self.fpn_size is None:
|
80 |
+
_tmp = getattr(self, "proj_"+name)(x[name])
|
81 |
+
else:
|
82 |
+
_tmp = x[name]
|
83 |
+
hs.append(_tmp)
|
84 |
+
names.append([name, _tmp.size()])
|
85 |
+
|
86 |
+
hs = torch.cat(hs, dim=1).transpose(1, 2).contiguous() # B, S', C --> B, C, S
|
87 |
+
# print(hs.size(), names)
|
88 |
+
hs = self.param_pool0(hs)
|
89 |
+
### adaptive adjacency
|
90 |
+
q1 = self.conv_q1(hs).mean(1)
|
91 |
+
k1 = self.conv_k1(hs).mean(1)
|
92 |
+
A1 = self.tanh(q1.unsqueeze(-1) - k1.unsqueeze(1))
|
93 |
+
A1 = self.adj1 + A1 * self.alpha1
|
94 |
+
### graph convolution
|
95 |
+
hs = self.conv1(hs)
|
96 |
+
hs = torch.matmul(hs, A1)
|
97 |
+
hs = self.batch_norm1(hs)
|
98 |
+
### predict
|
99 |
+
hs = self.param_pool1(hs)
|
100 |
+
hs = self.dropout(hs)
|
101 |
+
hs = hs.flatten(1)
|
102 |
+
hs = self.classifier(hs)
|
103 |
+
|
104 |
+
return hs
|
105 |
+
|
106 |
+
class WeaklySelector(nn.Module):
|
107 |
+
|
108 |
+
def __init__(self, inputs: dict, num_classes: int, num_select: dict, fpn_size: Union[int, None] = None):
|
109 |
+
"""
|
110 |
+
inputs: dictionary contain torch.Tensors, which comes from backbone
|
111 |
+
[Tensor1(hidden feature1), Tensor2(hidden feature2)...]
|
112 |
+
Please note that if len(features.size) equal to 3, the order of dimension must be [B,S,C],
|
113 |
+
S mean the spatial domain, and if len(features.size) equal to 4, the order must be [B,C,H,W]
|
114 |
+
"""
|
115 |
+
super(WeaklySelector, self).__init__()
|
116 |
+
|
117 |
+
self.num_select = num_select
|
118 |
+
|
119 |
+
self.fpn_size = fpn_size
|
120 |
+
### build classifier
|
121 |
+
if self.fpn_size is None:
|
122 |
+
self.num_classes = num_classes
|
123 |
+
for name in inputs:
|
124 |
+
fs_size = inputs[name].size()
|
125 |
+
if len(fs_size) == 3:
|
126 |
+
in_size = fs_size[2]
|
127 |
+
elif len(fs_size) == 4:
|
128 |
+
in_size = fs_size[1]
|
129 |
+
m = nn.Linear(in_size, num_classes)
|
130 |
+
self.add_module("classifier_l_"+name, m)
|
131 |
+
|
132 |
+
self.thresholds = {}
|
133 |
+
for name in inputs:
|
134 |
+
self.thresholds[name] = []
|
135 |
+
|
136 |
+
# def select(self, logits, l_name):
|
137 |
+
# """
|
138 |
+
# logits: [B, S, num_classes]
|
139 |
+
# """
|
140 |
+
# probs = torch.softmax(logits, dim=-1)
|
141 |
+
# scores, _ = torch.max(probs, dim=-1)
|
142 |
+
# _, ids = torch.sort(scores, -1, descending=True)
|
143 |
+
# sn = self.num_select[l_name]
|
144 |
+
# s_ids = ids[:, :sn]
|
145 |
+
# not_s_ids = ids[:, sn:]
|
146 |
+
# return s_ids.unsqueeze(-1), not_s_ids.unsqueeze(-1)
|
147 |
+
|
148 |
+
def forward(self, x, logits=None):
|
149 |
+
"""
|
150 |
+
x :
|
151 |
+
dictionary contain the features maps which
|
152 |
+
come from your choosen layers.
|
153 |
+
size must be [B, HxW, C] ([B, S, C]) or [B, C, H, W].
|
154 |
+
[B,C,H,W] will be transpose to [B, HxW, C] automatically.
|
155 |
+
"""
|
156 |
+
if self.fpn_size is None:
|
157 |
+
logits = {}
|
158 |
+
selections = {}
|
159 |
+
for name in x:
|
160 |
+
# print("[selector]", name, x[name].size())
|
161 |
+
if "FPN1_" in name:
|
162 |
+
continue
|
163 |
+
if len(x[name].size()) == 4:
|
164 |
+
B, C, H, W = x[name].size()
|
165 |
+
x[name] = x[name].view(B, C, H*W).permute(0, 2, 1).contiguous()
|
166 |
+
C = x[name].size(-1)
|
167 |
+
if self.fpn_size is None:
|
168 |
+
logits[name] = getattr(self, "classifier_l_"+name)(x[name])
|
169 |
+
|
170 |
+
probs = torch.softmax(logits[name], dim=-1)
|
171 |
+
sum_probs = torch.softmax(logits[name].mean(1), dim=-1)
|
172 |
+
selections[name] = []
|
173 |
+
preds_1 = []
|
174 |
+
preds_0 = []
|
175 |
+
num_select = self.num_select[name]
|
176 |
+
for bi in range(logits[name].size(0)):
|
177 |
+
_, max_ids = torch.max(sum_probs[bi], dim=-1)
|
178 |
+
confs, ranks = torch.sort(probs[bi, :, max_ids], descending=True)
|
179 |
+
sf = x[name][bi][ranks[:num_select]]
|
180 |
+
nf = x[name][bi][ranks[num_select:]] # calculate
|
181 |
+
selections[name].append(sf) # [num_selected, C]
|
182 |
+
preds_1.append(logits[name][bi][ranks[:num_select]])
|
183 |
+
preds_0.append(logits[name][bi][ranks[num_select:]])
|
184 |
+
|
185 |
+
if bi >= len(self.thresholds[name]):
|
186 |
+
self.thresholds[name].append(confs[num_select]) # for initialize
|
187 |
+
else:
|
188 |
+
self.thresholds[name][bi] = confs[num_select]
|
189 |
+
|
190 |
+
selections[name] = torch.stack(selections[name])
|
191 |
+
preds_1 = torch.stack(preds_1)
|
192 |
+
preds_0 = torch.stack(preds_0)
|
193 |
+
|
194 |
+
logits["select_"+name] = preds_1
|
195 |
+
logits["drop_"+name] = preds_0
|
196 |
+
|
197 |
+
return selections
|
198 |
+
|
199 |
+
|
200 |
+
class FPN(nn.Module):
|
201 |
+
|
202 |
+
def __init__(self, inputs: dict, fpn_size: int, proj_type: str, upsample_type: str):
|
203 |
+
"""
|
204 |
+
inputs : dictionary contains torch.Tensor
|
205 |
+
which comes from backbone output
|
206 |
+
fpn_size: integer, fpn
|
207 |
+
proj_type:
|
208 |
+
in ["Conv", "Linear"]
|
209 |
+
upsample_type:
|
210 |
+
in ["Bilinear", "Conv", "Fc"]
|
211 |
+
for convolution neural network (e.g. ResNet, EfficientNet), recommand 'Bilinear'.
|
212 |
+
for Vit, "Fc". and Swin-T, "Conv"
|
213 |
+
"""
|
214 |
+
super(FPN, self).__init__()
|
215 |
+
assert proj_type in ["Conv", "Linear"], \
|
216 |
+
"FPN projection type {} were not support yet, please choose type 'Conv' or 'Linear'".format(proj_type)
|
217 |
+
assert upsample_type in ["Bilinear", "Conv"], \
|
218 |
+
"FPN upsample type {} were not support yet, please choose type 'Bilinear' or 'Conv'".format(proj_type)
|
219 |
+
|
220 |
+
self.fpn_size = fpn_size
|
221 |
+
self.upsample_type = upsample_type
|
222 |
+
inp_names = [name for name in inputs]
|
223 |
+
|
224 |
+
for i, node_name in enumerate(inputs):
|
225 |
+
### projection module
|
226 |
+
if proj_type == "Conv":
|
227 |
+
m = nn.Sequential(
|
228 |
+
nn.Conv2d(inputs[node_name].size(1), inputs[node_name].size(1), 1),
|
229 |
+
nn.ReLU(),
|
230 |
+
nn.Conv2d(inputs[node_name].size(1), fpn_size, 1)
|
231 |
+
)
|
232 |
+
elif proj_type == "Linear":
|
233 |
+
in_feat = inputs[node_name]
|
234 |
+
if isinstance(in_feat, torch.Tensor):
|
235 |
+
dim = in_feat.size(-1)
|
236 |
+
else:
|
237 |
+
raise ValueError(f"Entrée invalide dans FPN: {type(in_feat)} pour node_name={node_name}")
|
238 |
+
|
239 |
+
m = nn.Sequential(
|
240 |
+
nn.Linear(dim, dim),
|
241 |
+
nn.ReLU(),
|
242 |
+
nn.Linear(dim, fpn_size),
|
243 |
+
)
|
244 |
+
|
245 |
+
self.add_module("Proj_"+node_name, m)
|
246 |
+
|
247 |
+
### upsample module
|
248 |
+
if upsample_type == "Conv" and i != 0:
|
249 |
+
assert len(inputs[node_name].size()) == 3 # B, S, C
|
250 |
+
in_dim = inputs[node_name].size(1)
|
251 |
+
out_dim = inputs[inp_names[i-1]].size(1)
|
252 |
+
# if in_dim != out_dim:
|
253 |
+
m = nn.Conv1d(in_dim, out_dim, 1) # for spatial domain
|
254 |
+
# else:
|
255 |
+
# m = nn.Identity()
|
256 |
+
self.add_module("Up_"+node_name, m)
|
257 |
+
|
258 |
+
if upsample_type == "Bilinear":
|
259 |
+
self.upsample = nn.Upsample(scale_factor=2, mode='bilinear')
|
260 |
+
|
261 |
+
def upsample_add(self, x0: torch.Tensor, x1: torch.Tensor, x1_name: str):
|
262 |
+
"""
|
263 |
+
return Upsample(x1) + x1
|
264 |
+
"""
|
265 |
+
if self.upsample_type == "Bilinear":
|
266 |
+
if x1.size(-1) != x0.size(-1):
|
267 |
+
x1 = self.upsample(x1)
|
268 |
+
else:
|
269 |
+
x1 = getattr(self, "Up_"+x1_name)(x1)
|
270 |
+
return x1 + x0
|
271 |
+
|
272 |
+
def forward(self, x):
|
273 |
+
"""
|
274 |
+
x : dictionary
|
275 |
+
{
|
276 |
+
"node_name1": feature1,
|
277 |
+
"node_name2": feature2, ...
|
278 |
+
}
|
279 |
+
"""
|
280 |
+
### project to same dimension
|
281 |
+
hs = []
|
282 |
+
for i, name in enumerate(x):
|
283 |
+
if "FPN1_" in name:
|
284 |
+
continue
|
285 |
+
x[name] = getattr(self, "Proj_"+name)(x[name])
|
286 |
+
hs.append(name)
|
287 |
+
|
288 |
+
x["FPN1_" + "layer4"] = x["layer4"]
|
289 |
+
|
290 |
+
for i in range(len(hs)-1, 0, -1):
|
291 |
+
x1_name = hs[i]
|
292 |
+
x0_name = hs[i-1]
|
293 |
+
x[x0_name] = self.upsample_add(x[x0_name],
|
294 |
+
x[x1_name],
|
295 |
+
x1_name)
|
296 |
+
x["FPN1_" + x0_name] = x[x0_name]
|
297 |
+
|
298 |
+
return x
|
299 |
+
|
300 |
+
|
301 |
+
class FPN_UP(nn.Module):
|
302 |
+
|
303 |
+
def __init__(self,
|
304 |
+
inputs: dict,
|
305 |
+
fpn_size: int):
|
306 |
+
super(FPN_UP, self).__init__()
|
307 |
+
|
308 |
+
inp_names = [name for name in inputs]
|
309 |
+
|
310 |
+
for i, node_name in enumerate(inputs):
|
311 |
+
### projection module
|
312 |
+
m = nn.Sequential(
|
313 |
+
nn.Linear(fpn_size, fpn_size),
|
314 |
+
nn.ReLU(),
|
315 |
+
nn.Linear(fpn_size, fpn_size),
|
316 |
+
)
|
317 |
+
self.add_module("Proj_"+node_name, m)
|
318 |
+
|
319 |
+
### upsample module
|
320 |
+
if i != (len(inputs) - 1):
|
321 |
+
assert len(inputs[node_name].size()) == 3 # B, S, C
|
322 |
+
in_dim = inputs[node_name].size(1)
|
323 |
+
out_dim = inputs[inp_names[i+1]].size(1)
|
324 |
+
m = nn.Conv1d(in_dim, out_dim, 1) # for spatial domain
|
325 |
+
self.add_module("Down_"+node_name, m)
|
326 |
+
# print("Down_"+node_name, in_dim, out_dim)
|
327 |
+
"""
|
328 |
+
Down_layer1 2304 576
|
329 |
+
Down_layer2 576 144
|
330 |
+
Down_layer3 144 144
|
331 |
+
"""
|
332 |
+
|
333 |
+
def downsample_add(self, x0: torch.Tensor, x1: torch.Tensor, x0_name: str):
|
334 |
+
"""
|
335 |
+
return Upsample(x1) + x1
|
336 |
+
"""
|
337 |
+
# print("[downsample_add] Down_" + x0_name)
|
338 |
+
x0 = getattr(self, "Down_" + x0_name)(x0)
|
339 |
+
return x1 + x0
|
340 |
+
|
341 |
+
def forward(self, x):
|
342 |
+
"""
|
343 |
+
x : dictionary
|
344 |
+
{
|
345 |
+
"node_name1": feature1,
|
346 |
+
"node_name2": feature2, ...
|
347 |
+
}
|
348 |
+
"""
|
349 |
+
### project to same dimension
|
350 |
+
hs = []
|
351 |
+
for i, name in enumerate(x):
|
352 |
+
if "FPN1_" in name:
|
353 |
+
continue
|
354 |
+
x[name] = getattr(self, "Proj_"+name)(x[name])
|
355 |
+
hs.append(name)
|
356 |
+
|
357 |
+
# print(hs)
|
358 |
+
for i in range(0, len(hs) - 1):
|
359 |
+
x0_name = hs[i]
|
360 |
+
x1_name = hs[i+1]
|
361 |
+
# print(x0_name, x1_name)
|
362 |
+
# print(x[x0_name].size(), x[x1_name].size())
|
363 |
+
x[x1_name] = self.downsample_add(x[x0_name],
|
364 |
+
x[x1_name],
|
365 |
+
x0_name)
|
366 |
+
return x
|
367 |
+
|
368 |
+
|
369 |
+
|
370 |
+
|
371 |
+
class PluginMoodel(nn.Module):
|
372 |
+
|
373 |
+
def __init__(self,
|
374 |
+
backbone: torch.nn.Module,
|
375 |
+
return_nodes: Union[dict, None],
|
376 |
+
img_size: int,
|
377 |
+
use_fpn: bool,
|
378 |
+
fpn_size: Union[int, None],
|
379 |
+
proj_type: str,
|
380 |
+
upsample_type: str,
|
381 |
+
use_selection: bool,
|
382 |
+
num_classes: int,
|
383 |
+
num_selects: dict,
|
384 |
+
use_combiner: bool,
|
385 |
+
comb_proj_size: Union[int, None]
|
386 |
+
):
|
387 |
+
"""
|
388 |
+
* backbone:
|
389 |
+
torch.nn.Module class (recommand pretrained on ImageNet or IG-3.5B-17k(provided by FAIR))
|
390 |
+
* return_nodes:
|
391 |
+
e.g.
|
392 |
+
return_nodes = {
|
393 |
+
# node_name: user-specified key for output dict
|
394 |
+
'layer1.2.relu_2': 'layer1',
|
395 |
+
'layer2.3.relu_2': 'layer2',
|
396 |
+
'layer3.5.relu_2': 'layer3',
|
397 |
+
'layer4.2.relu_2': 'layer4',
|
398 |
+
} # you can see the example on https://pytorch.org/vision/main/feature_extraction.html
|
399 |
+
!!! if using 'Swin-Transformer', please set return_nodes to None
|
400 |
+
!!! and please set use_fpn to True
|
401 |
+
* feat_sizes:
|
402 |
+
tuple or list contain features map size of each layers.
|
403 |
+
((C, H, W)). e.g. ((1024, 14, 14), (2048, 7, 7))
|
404 |
+
* use_fpn:
|
405 |
+
boolean, use features pyramid network or not
|
406 |
+
* fpn_size:
|
407 |
+
integer, features pyramid network projection dimension
|
408 |
+
* num_selects:
|
409 |
+
num_selects = {
|
410 |
+
# match user-specified in return_nodes
|
411 |
+
"layer1": 2048,
|
412 |
+
"layer2": 512,
|
413 |
+
"layer3": 128,
|
414 |
+
"layer4": 32,
|
415 |
+
}
|
416 |
+
Note: after selector module (WeaklySelector) , the feature map's size is [B, S', C] which
|
417 |
+
contained by 'logits' or 'selections' dictionary (S' is selection number, different layer
|
418 |
+
could be different).
|
419 |
+
"""
|
420 |
+
super(PluginMoodel, self).__init__()
|
421 |
+
|
422 |
+
### = = = = = Backbone = = = = =
|
423 |
+
self.return_nodes = return_nodes
|
424 |
+
if return_nodes is not None:
|
425 |
+
self.backbone = create_feature_extractor(backbone, return_nodes=return_nodes)
|
426 |
+
else:
|
427 |
+
self.backbone = backbone
|
428 |
+
|
429 |
+
### get hidden feartues size
|
430 |
+
rand_in = torch.randn(1, 3, img_size, img_size)
|
431 |
+
outs = self.backbone(rand_in)
|
432 |
+
|
433 |
+
### just original backbone
|
434 |
+
if not use_fpn and (not use_selection and not use_combiner):
|
435 |
+
for name in outs:
|
436 |
+
fs_size = outs[name].size()
|
437 |
+
if len(fs_size) == 3:
|
438 |
+
out_size = fs_size.size(-1)
|
439 |
+
elif len(fs_size) == 4:
|
440 |
+
out_size = fs_size.size(1)
|
441 |
+
else:
|
442 |
+
raise ValusError("The size of output dimension of previous must be 3 or 4.")
|
443 |
+
self.classifier = nn.Linear(out_size, num_classes)
|
444 |
+
|
445 |
+
### = = = = = FPN = = = = =
|
446 |
+
self.use_fpn = use_fpn
|
447 |
+
if self.use_fpn:
|
448 |
+
self.fpn_down = FPN(outs, fpn_size, proj_type, upsample_type)
|
449 |
+
self.build_fpn_classifier_down(outs, fpn_size, num_classes)
|
450 |
+
self.fpn_up = FPN_UP(outs, fpn_size)
|
451 |
+
self.build_fpn_classifier_up(outs, fpn_size, num_classes)
|
452 |
+
|
453 |
+
self.fpn_size = fpn_size
|
454 |
+
|
455 |
+
### = = = = = Selector = = = = =
|
456 |
+
self.use_selection = use_selection
|
457 |
+
if self.use_selection:
|
458 |
+
w_fpn_size = self.fpn_size if self.use_fpn else None # if not using fpn, build classifier in weakly selector
|
459 |
+
self.selector = WeaklySelector(outs, num_classes, num_selects, w_fpn_size)
|
460 |
+
|
461 |
+
### = = = = = Combiner = = = = =
|
462 |
+
self.use_combiner = use_combiner
|
463 |
+
if self.use_combiner:
|
464 |
+
assert self.use_selection, "Please use selection module before combiner"
|
465 |
+
if self.use_fpn:
|
466 |
+
gcn_inputs, gcn_proj_size = None, None
|
467 |
+
else:
|
468 |
+
gcn_inputs, gcn_proj_size = outs, comb_proj_size # redundant, fix in future
|
469 |
+
total_num_selects = sum([num_selects[name] for name in num_selects]) # sum
|
470 |
+
self.combiner = GCNCombiner(total_num_selects, num_classes, gcn_inputs, gcn_proj_size, self.fpn_size)
|
471 |
+
|
472 |
+
def build_fpn_classifier_up(self, inputs: dict, fpn_size: int, num_classes: int):
|
473 |
+
"""
|
474 |
+
Teh results of our experiments show that linear classifier in this case may cause some problem.
|
475 |
+
"""
|
476 |
+
for name in inputs:
|
477 |
+
m = nn.Sequential(
|
478 |
+
nn.Conv1d(fpn_size, fpn_size, 1),
|
479 |
+
nn.BatchNorm1d(fpn_size),
|
480 |
+
nn.ReLU(),
|
481 |
+
nn.Conv1d(fpn_size, num_classes, 1)
|
482 |
+
)
|
483 |
+
self.add_module("fpn_classifier_up_"+name, m)
|
484 |
+
|
485 |
+
def build_fpn_classifier_down(self, inputs: dict, fpn_size: int, num_classes: int):
|
486 |
+
"""
|
487 |
+
Teh results of our experiments show that linear classifier in this case may cause some problem.
|
488 |
+
"""
|
489 |
+
for name in inputs:
|
490 |
+
m = nn.Sequential(
|
491 |
+
nn.Conv1d(fpn_size, fpn_size, 1),
|
492 |
+
nn.BatchNorm1d(fpn_size),
|
493 |
+
nn.ReLU(),
|
494 |
+
nn.Conv1d(fpn_size, num_classes, 1)
|
495 |
+
)
|
496 |
+
self.add_module("fpn_classifier_down_" + name, m)
|
497 |
+
|
498 |
+
def forward_backbone(self, x):
|
499 |
+
return self.backbone(x)
|
500 |
+
|
501 |
+
def fpn_predict_down(self, x: dict, logits: dict):
|
502 |
+
"""
|
503 |
+
x: [B, C, H, W] or [B, S, C]
|
504 |
+
[B, C, H, W] --> [B, H*W, C]
|
505 |
+
"""
|
506 |
+
for name in x:
|
507 |
+
if "FPN1_" not in name:
|
508 |
+
continue
|
509 |
+
### predict on each features point
|
510 |
+
if len(x[name].size()) == 4:
|
511 |
+
B, C, H, W = x[name].size()
|
512 |
+
logit = x[name].view(B, C, H*W)
|
513 |
+
elif len(x[name].size()) == 3:
|
514 |
+
logit = x[name].transpose(1, 2).contiguous()
|
515 |
+
model_name = name.replace("FPN1_", "")
|
516 |
+
logits[name] = getattr(self, "fpn_classifier_down_" + model_name)(logit)
|
517 |
+
logits[name] = logits[name].transpose(1, 2).contiguous() # transpose
|
518 |
+
|
519 |
+
def fpn_predict_up(self, x: dict, logits: dict):
|
520 |
+
"""
|
521 |
+
x: [B, C, H, W] or [B, S, C]
|
522 |
+
[B, C, H, W] --> [B, H*W, C]
|
523 |
+
"""
|
524 |
+
for name in x:
|
525 |
+
if "FPN1_" in name:
|
526 |
+
continue
|
527 |
+
### predict on each features point
|
528 |
+
if len(x[name].size()) == 4:
|
529 |
+
B, C, H, W = x[name].size()
|
530 |
+
logit = x[name].view(B, C, H*W)
|
531 |
+
elif len(x[name].size()) == 3:
|
532 |
+
logit = x[name].transpose(1, 2).contiguous()
|
533 |
+
model_name = name.replace("FPN1_", "")
|
534 |
+
logits[name] = getattr(self, "fpn_classifier_up_" + model_name)(logit)
|
535 |
+
logits[name] = logits[name].transpose(1, 2).contiguous() # transpose
|
536 |
+
|
537 |
+
def forward(self, x: torch.Tensor):
|
538 |
+
|
539 |
+
logits = {}
|
540 |
+
|
541 |
+
x = self.forward_backbone(x)
|
542 |
+
|
543 |
+
if self.use_fpn:
|
544 |
+
x = self.fpn_down(x)
|
545 |
+
# print([name for name in x])
|
546 |
+
self.fpn_predict_down(x, logits)
|
547 |
+
x = self.fpn_up(x)
|
548 |
+
self.fpn_predict_up(x, logits)
|
549 |
+
|
550 |
+
if self.use_selection:
|
551 |
+
selects = self.selector(x, logits)
|
552 |
+
|
553 |
+
if self.use_combiner:
|
554 |
+
comb_outs = self.combiner(selects)
|
555 |
+
logits['comb_outs'] = comb_outs
|
556 |
+
return logits
|
557 |
+
|
558 |
+
if self.use_selection or self.fpn:
|
559 |
+
return logits
|
560 |
+
|
561 |
+
### original backbone (only predict final selected layer)
|
562 |
+
for name in x:
|
563 |
+
hs = x[name]
|
564 |
+
|
565 |
+
if len(hs.size()) == 4:
|
566 |
+
hs = F.adaptive_avg_pool2d(hs, (1, 1))
|
567 |
+
hs = hs.flatten(1)
|
568 |
+
else:
|
569 |
+
hs = hs.mean(1)
|
570 |
+
out = self.classifier(hs)
|
571 |
+
logits['ori_out'] = logits
|
572 |
+
|
573 |
+
return
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gdown
|
2 |
+
gradio==4.25.0
|
3 |
+
torch
|
4 |
+
torchvision
|
5 |
+
timm
|
6 |
+
opencv-python
|
7 |
+
numpy
|
8 |
+
pillow
|
9 |
+
requests
|