DirectAlu / app.py
RahmaDev's picture
Upload app.py
b6f2185 verified
import gdown
import os
import torch
import requests
import numpy as np
import numpy.matlib
import copy
import cv2
from PIL import Image
from typing import List
import timm
import gradio as gr
import torchvision.transforms as transforms
from pim_module import PluginMoodel # Assure-toi que ce fichier est présent
# === Téléchargement automatique depuis Google Drive ===
if not os.path.exists("weights.pt"):
print("Téléchargement des poids depuis Google Drive avec gdown...")
file_id = "10nhim7twcKEGB16jVilPQGW0CrKo4jOY"
url = f"https://drive.google.com/uc?id={file_id}"
gdown.download(url, "weights.pt", quiet=False)
# === Classes
classes_list = [
"Ferrage_Et_Accessoires_Anti_Fausse_Manoeuvre",
"Ferrage_Et_Accessoires_Busettes",
"Ferrage_Et_Accessoires_Butees",
"Ferrage_Et_Accessoires_Chariots",
"Ferrage_Et_Accessoires_Charniere",
"Ferrage_Et_Accessoires_Compas_limiteur",
"Ferrage_Et_Accessoires_Cylindres",
"Ferrage_Et_Accessoires_Gaches",
"Ferrage_Et_Accessoires_Renvois_D_Angle",
"Joints_Et_Consommables_Equerres_Aluminium_Moulees",
"Joints_Et_Consommables_Visserie_Inox_Alu",
"Poignee_Carre_7_mm",
"Poignee_Carre_8_mm",
"Poignee_Cremone",
"Poignee_Cuvette",
"Poignee_De_Tirage",
"Poignee_Pour_Levant_Coulissant",
"Serrure_Cremone_Multipoints",
"Serrure_Cuvette",
"Serrure_Gaches",
"Serrure_Loqueteau",
"Serrure_Pene_Crochet",
"Serrure_Pour_Porte",
"Serrure_Tringles"
]
short_classes_list = [
"Anti-fausse-manoeuvre",
"Busettes",
"Butées",
"Chariots",
"Charnière",
"Compas-limiteur",
"Cylindres",
"Gaches",
"Renvois d'angle",
"Equerres aluminium moulées",
"Visserie inox alu",
"Poignée carré 7 mm",
"Poignée carré 8 mm",
"Poignée crémone",
"Poignée cuvette",
"Poignée de tirage",
"Poignée pour levant coulissant",
"Serrure crémone multipoints",
"Serrure cuvette",
"Serrure gaches",
"Loqueteau",
"Serrure pene crochet",
"Serrure pour porte",
"Serrure tringles",
]
data_size = 384
fpn_size = 1536
num_classes = 24
num_selects = {'layer1': 256, 'layer2': 128, 'layer3': 64, 'layer4': 32}
features, grads, module_id_mapper = {}, {}, {}
def forward_hook(module, inp_hs, out_hs):
layer_id = len(features) + 1
module_id_mapper[module] = layer_id
features[layer_id] = {"in": inp_hs, "out": out_hs}
def backward_hook(module, inp_grad, out_grad):
layer_id = module_id_mapper[module]
grads[layer_id] = {"in": inp_grad, "out": out_grad}
def build_model(path: str):
backbone = timm.create_model('swin_large_patch4_window12_384_in22k', pretrained=True)
model = PluginMoodel(
backbone=backbone,
return_nodes=None,
img_size=data_size,
use_fpn=True,
fpn_size=fpn_size,
proj_type="Linear",
upsample_type="Conv",
use_selection=True,
num_classes=num_classes,
num_selects=num_selects,
use_combiner=True,
comb_proj_size=None
)
ckpt = torch.load(path, map_location="cpu", weights_only=False)
model.load_state_dict(ckpt["model"], strict=False)
model.eval()
for layer in [0, 1, 2, 3]:
model.backbone.layers[layer].register_forward_hook(forward_hook)
model.backbone.layers[layer].register_full_backward_hook(backward_hook)
for i in range(1, 5):
getattr(model.fpn_down, f'Proj_layer{i}').register_forward_hook(forward_hook)
getattr(model.fpn_down, f'Proj_layer{i}').register_full_backward_hook(backward_hook)
getattr(model.fpn_up, f'Proj_layer{i}').register_forward_hook(forward_hook)
getattr(model.fpn_up, f'Proj_layer{i}').register_full_backward_hook(backward_hook)
return model
class ImgLoader:
def __init__(self, img_size):
self.transform = transforms.Compose([
transforms.Resize((510, 510), Image.BILINEAR),
transforms.CenterCrop((img_size, img_size)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
def load(self, input_img):
if isinstance(input_img, str):
ori_img = cv2.imread(input_img)
img = Image.fromarray(cv2.cvtColor(ori_img, cv2.COLOR_BGR2RGB))
elif isinstance(input_img, Image.Image):
img = input_img
else:
raise ValueError("Image invalide")
if img.mode != "RGB":
img = img.convert("RGB")
return self.transform(img).unsqueeze(0)
def cal_backward(out) -> dict:
target_layer_names = ['layer1', 'layer2', 'layer3', 'layer4',
'FPN1_layer1', 'FPN1_layer2', 'FPN1_layer3', 'FPN1_layer4', 'comb_outs']
sum_out = None
for name in target_layer_names:
tmp_out = out[name].mean(1) if name != "comb_outs" else out[name]
tmp_out = torch.softmax(tmp_out, dim=-1)
sum_out = tmp_out if sum_out is None else sum_out + tmp_out
with torch.no_grad():
smax = torch.softmax(sum_out, dim=-1)
A = np.transpose(np.matlib.repmat(smax[0], num_classes, 1)) - np.eye(num_classes)
_, _, V = np.linalg.svd(A, full_matrices=True)
V = V[num_classes - 1, :]
if V[0] < 0:
V = -V
V = np.log(V)
V = V - min(V)
V = V / sum(V)
top5_indices = np.argsort(-V)[:5]
top5_scores = -np.sort(-V)[:5]
# Construction du dictionnaire pour gr.Label
top5_dict = {classes_list[int(idx)]: float(f"{score:.4f}") for idx, score in zip(top5_indices, top5_scores)}
return top5_dict
# === Chargement du modèle
model = build_model("weights.pt")
img_loader = ImgLoader(data_size)
def predict_image(image: Image.Image):
global features, grads, module_id_mapper
features, grads, module_id_mapper = {}, {}, {}
if image is None:
return {}
# raise ValueError("Aucune image reçue. Vérifie l'entrée.")
if image.mode != "RGB":
image = image.convert("RGB")
image_path = "temp.jpg"
image.save(image_path)
img_tensor = img_loader.load(image_path)
out = model(img_tensor)
top5_dict = cal_backward(out) # {classe: score}
gallery_outputs = []
for idx, class_name in enumerate(list(top5_dict.keys())):
images = [
(f"imgs/{class_name}/{class_name}_0001.jpg", f"Exemple {class_name} 1"),
(f"imgs/{class_name}/{class_name}_0002.jpg", f"Exemple {class_name} 2"),
(f"imgs/{class_name}/{class_name}_0003.jpg", f"Exemple {class_name} 3"),
]
gallery_outputs.append(images)
return top5_dict, *gallery_outputs
# === Interface Gradio
with gr.Blocks(css="""
.gr-image-upload { display: none !important }
.gallery-container .gr-box { height: auto !important; padding: 0 !important; }
""") as demo:
with gr.Row():
with gr.Column(scale=1):
with gr.Tab("Téléversement"):
image_input_upload = gr.Image(type="pil", label="Image à classer (upload)", sources=["upload"])
with gr.Tab("Webcam"):
image_input_webcam = gr.Image(type="pil", label="Image à classer (webcam)", sources=["webcam"])
with gr.Column(scale=1.5):
label_output = gr.Label(label="Prédictions")
gallery_outputs = [
gr.Gallery(label=f"", columns=3, height=300, container=True, elem_classes=["gallery-container"])
for i in range(5)
]
image_input_upload.change(fn=predict_image, inputs=image_input_upload, outputs=[label_output] + gallery_outputs)
image_input_webcam.change(fn=predict_image, inputs=image_input_webcam, outputs=[label_output] + gallery_outputs)
if __name__ == "__main__":
demo.launch()