|
""" Model / state_dict utils |
|
|
|
Hacked together by / Copyright 2020 Ross Wightman |
|
""" |
|
from .model_ema import ModelEma |
|
import torch |
|
import fnmatch |
|
|
|
def unwrap_model(model): |
|
if isinstance(model, ModelEma): |
|
return unwrap_model(model.ema) |
|
else: |
|
return model.module if hasattr(model, 'module') else model |
|
|
|
|
|
def get_state_dict(model, unwrap_fn=unwrap_model): |
|
return unwrap_fn(model).state_dict() |
|
|
|
|
|
def avg_sq_ch_mean(model, input, output): |
|
"calculate average channel square mean of output activations" |
|
return torch.mean(output.mean(axis=[0,2,3])**2).item() |
|
|
|
|
|
def avg_ch_var(model, input, output): |
|
"calculate average channel variance of output activations" |
|
return torch.mean(output.var(axis=[0,2,3])).item()\ |
|
|
|
|
|
def avg_ch_var_residual(model, input, output): |
|
"calculate average channel variance of output activations" |
|
return torch.mean(output.var(axis=[0,2,3])).item() |
|
|
|
|
|
class ActivationStatsHook: |
|
"""Iterates through each of `model`'s modules and matches modules using unix pattern |
|
matching based on `hook_fn_locs` and registers `hook_fn` to the module if there is |
|
a match. |
|
|
|
Arguments: |
|
model (nn.Module): model from which we will extract the activation stats |
|
hook_fn_locs (List[str]): List of `hook_fn` locations based on Unix type string |
|
matching with the name of model's modules. |
|
hook_fns (List[Callable]): List of hook functions to be registered at every |
|
module in `layer_names`. |
|
|
|
Inspiration from https://docs.fast.ai/callback.hook.html. |
|
|
|
Refer to https://gist.github.com/amaarora/6e56942fcb46e67ba203f3009b30d950 for an example |
|
on how to plot Signal Propogation Plots using `ActivationStatsHook`. |
|
""" |
|
|
|
def __init__(self, model, hook_fn_locs, hook_fns): |
|
self.model = model |
|
self.hook_fn_locs = hook_fn_locs |
|
self.hook_fns = hook_fns |
|
if len(hook_fn_locs) != len(hook_fns): |
|
raise ValueError("Please provide `hook_fns` for each `hook_fn_locs`, \ |
|
their lengths are different.") |
|
self.stats = dict((hook_fn.__name__, []) for hook_fn in hook_fns) |
|
for hook_fn_loc, hook_fn in zip(hook_fn_locs, hook_fns): |
|
self.register_hook(hook_fn_loc, hook_fn) |
|
|
|
def _create_hook(self, hook_fn): |
|
def append_activation_stats(module, input, output): |
|
out = hook_fn(module, input, output) |
|
self.stats[hook_fn.__name__].append(out) |
|
return append_activation_stats |
|
|
|
def register_hook(self, hook_fn_loc, hook_fn): |
|
for name, module in self.model.named_modules(): |
|
if not fnmatch.fnmatch(name, hook_fn_loc): |
|
continue |
|
module.register_forward_hook(self._create_hook(hook_fn)) |
|
|
|
|
|
def extract_spp_stats(model, |
|
hook_fn_locs, |
|
hook_fns, |
|
input_shape=[8, 3, 224, 224]): |
|
"""Extract average square channel mean and variance of activations during |
|
forward pass to plot Signal Propogation Plots (SPP). |
|
|
|
Paper: https://arxiv.org/abs/2101.08692 |
|
|
|
Example Usage: https://gist.github.com/amaarora/6e56942fcb46e67ba203f3009b30d950 |
|
""" |
|
x = torch.normal(0., 1., input_shape) |
|
hook = ActivationStatsHook(model, hook_fn_locs=hook_fn_locs, hook_fns=hook_fns) |
|
_ = model(x) |
|
return hook.stats |
|
|