File size: 4,685 Bytes
1e82508
9c2fe2f
1e82508
839f7b2
1e82508
 
9c2fe2f
839f7b2
1e82508
9c2fe2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
839f7b2
1e82508
9c2fe2f
 
 
 
 
1e82508
9c2fe2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e82508
9c2fe2f
 
839f7b2
9c2fe2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e82508
9c2fe2f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import gradio as gr
import os

import cohereAPI


# Conversation history storage
conversation_history = []

# Model configurations
COHERE_MODELS = [
    "command-a-03-2025",
    "command-r7b-12-2024",
    "command-r-plus-08-2024",
    "command-r-08-2024",
    "command-light",
    "command-light-nightly",
    "command",
    "command-nightly"
]

def update_model_choices(provider):
    """Update model dropdown choices based on selected provider"""
    if provider == "Cohere":
        return gr.Dropdown(choices=COHERE_MODELS, value=COHERE_MODELS[0])
    else:
        return gr.Dropdown(choices=[], value=None)

def show_model_change_info(model_name):
    """Show info modal when model is changed"""
    if model_name:
        gr.Info(f"picking up from here with {model_name}")
    return model_name


def respond(message, history, model_name="command-a-03-2025"):
    """Generate streaming response using Cohere API"""
    global conversation_history
    
    # Get API key from environment
    api_key = os.getenv('COHERE_API_KEY')
    if not api_key:
        yield "Error: COHERE_API_KEY environment variable not set"
        return
    
    # System message for the chatbot
    system_message = """You are a helpful AI assistant. Provide concise but complete responses. 
                        Be direct and to the point while ensuring you fully address the user's question or request. 
                        Do not repeat the user's question in your response. Do not exceed 50 words."""

    try:
        # Use streaming function
        partial_message = ""
        for chunk in cohereAPI.send_message_stream(
            system_message=system_message,
            user_message=message,
            conversation_history=conversation_history,
            api_key=api_key,
            model_name=model_name
        ):
            partial_message += chunk
            yield partial_message
    except Exception as e:
        yield f"Error: {str(e)}"

with gr.Blocks() as demo:
    gr.Markdown("## Modular Chatbot")

    with gr.Row():
        with gr.Column(scale=2):
            chat_interface = gr.ChatInterface(
                fn=respond,
                type="messages",
                save_history=True
            )
            with gr.Accordion("Chat Settings", elem_id="chat_settings_group"):
                with gr.Row():
                    with gr.Column(scale=3):
                        provider = gr.Dropdown(
                            info="Provider",
                            choices=["Cohere", "OpenAI", "Anthropic", "Google", "HuggingFace"],
                            value="Cohere",
                            elem_id="provider_dropdown",
                            interactive=True,
                            show_label=False
                        )
                        model = gr.Dropdown(
                            info="Model",
                            choices=COHERE_MODELS,
                            value=COHERE_MODELS[0],
                            elem_id="model_dropdown",
                            interactive=True,
                            show_label=False
                        )
        
                    # Set up event handler for provider change
                    provider.change(
                        fn=update_model_choices,
                        inputs=[provider],
                        outputs=[model]
                    )
                    
                    # Set up event handler for model change
                    model.change(
                        fn=show_model_change_info,
                        inputs=[model],
                        outputs=[model]
                    )
                    
                    with gr.Column(scale=1):
                        temperature = gr.Slider(
                            label="Temperature",
                            info="Higher values make output more creative",
                            minimum=0.0,
                            maximum=1.0,
                            value=0.7,
                            step=0.01,
                            elem_id="temperature_slider",
                            interactive=True,
                            
                        )
                        max_tokens = gr.Textbox(
                            label="Max Tokens",
                            info="Higher values allow longer responses.",
                            value="8192",
                            elem_id="max_tokens_input",
                            interactive=True,
                            show_label=False,
                        )
        
if __name__ == "__main__":
    demo.launch()