import pandas as pd import numpy as np PAGE_MARKDOWN = """ """ PAGE_INFO = """[![Dataset on HF](https://huggingface.co/datasets/huggingface/badges/resolve/main/dataset-on-hf-lg.svg)](https://huggingface.co/datasets/booydar/babilong) | [GitHub](https://github.com/booydar/babilong) | [Paper](https://arxiv.org/abs/2406.10149) | [HF Dataset](https://huggingface.co/datasets/booydar/babilong) | [HF Dataset 1k samples per task](https://huggingface.co/datasets/RMT-team/babilong-1k-samples) |""" LENGTHS = ['0k', '1k', '2k', '4k', '8k', '16k', '32k', '64k', '128k', '512k', '1M', '2M'] LENGTHS_32k = ['0k', '1k', '2k', '4k', '8k', '16k', '32k'] LENGTHS_128k = ['0k', '1k', '2k', '4k', '8k', '16k', '32k', '64k', '128k'] def load_results(): old_results_path = "data/leaderboard-v0_results.csv" new_results_path = "babilong/babilong_results/all_results.csv" old_results = pd.read_csv(old_results_path) new_results = pd.read_csv(new_results_path) res = pd.concat([old_results, new_results]) res.replace(-1, np.nan, inplace=True) res['avg(32k)'] = res[LENGTHS_32k].mean(axis=1) res['avg(128k)'] = res[LENGTHS_128k].mean(axis=1) res.sort_values(['avg(128k)'], ascending=False, inplace=True) return res def style_dataframe(df): """ Style a pandas DataFrame with a color gradient. """ styled_df = df.copy() numeric_columns = styled_df.columns[1:] def color_scale(val): if pd.isna(val): return 'background-color: white; color: white' min_val = 0 max_val = 100 normalized = (val - min_val) / (max_val - min_val) if max_val > min_val else 0.5 r = int(255 * (1 - normalized) + 144 * normalized) g = int(204 * (1 - normalized) + 238 * normalized) b = int(204 * (1 - normalized) + 180 * normalized) return f'background-color: rgb({r}, {g}, {b})' styled = styled_df.style.map(color_scale, subset=numeric_columns) return styled