|
import streamlit as st |
|
import requests |
|
import re |
|
from bs4 import BeautifulSoup |
|
from langchain_text_splitters import RecursiveCharacterTextSplitter |
|
from langchain.docstore.document import Document |
|
import chromadb |
|
from sentence_transformers import SentenceTransformer |
|
import google.generativeai as genai |
|
|
|
genai.configure(api_key="AIzaSyAxUd2tS-qj9C7frYuHRsv92tziXHgIvLo") |
|
|
|
CHROMA_PATH = "chroma_db" |
|
chroma_client = chromadb.PersistentClient(path=CHROMA_PATH) |
|
collection = chroma_client.get_or_create_collection(name="formula_1") |
|
embedding_model = SentenceTransformer("all-MiniLM-L6-v2") |
|
|
|
def clean_text(text): |
|
text = re.sub(r'http\S+', '', text) |
|
text = re.sub(r'\s+', ' ', text).strip() |
|
return text |
|
|
|
def split_content_into_chunks(content): |
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200, length_function=len) |
|
documents = [Document(page_content=content)] |
|
return text_splitter.split_documents(documents) |
|
|
|
def add_chunks_to_db(chunks): |
|
documents = [chunk.page_content for chunk in chunks] |
|
ids = [f"ID{i}" for i in range(len(chunks))] |
|
embeddings = embedding_model.encode(documents, convert_to_list=True) |
|
collection.upsert(documents=documents, ids=ids, embeddings=embeddings) |
|
|
|
def scrape_text(url): |
|
try: |
|
response = requests.get(url) |
|
response.raise_for_status() |
|
soup = BeautifulSoup(response.text, 'html.parser') |
|
text = clean_text(soup.get_text()) |
|
chunks = split_content_into_chunks(text) |
|
add_chunks_to_db(chunks) |
|
return "Scraping and processing complete. You can now ask questions!" |
|
except requests.exceptions.RequestException as e: |
|
return f"Error scraping {url}: {e}" |
|
|
|
def ask_question(query): |
|
query_embedding = embedding_model.encode(query, convert_to_list=True) |
|
results = collection.query(query_embeddings=[query_embedding], n_results=2) |
|
top_chunks = results.get("documents", [[]])[0] |
|
system_prompt = """ |
|
You are a Formula 1 expert. You answer questions about Formula 1. |
|
But you only answer based on knowledge I'm providing you. You don't use your internal |
|
knowledge and you don't make things up. |
|
If you don't know the answer, just say: I don't know. |
|
""" + str(top_chunks) |
|
full_prompt = system_prompt + "\nUser Query: " + query |
|
model = genai.GenerativeModel('gemini-2.0-flash') |
|
response = model.generate_content(full_prompt) |
|
return response.text |
|
|
|
st.title("Web Scraping & Chatbot") |
|
|
|
url = st.text_input("Enter a URL:") |
|
if url: |
|
if st.button("Scrape & Process"): |
|
result = scrape_text(url) |
|
st.success(result) |
|
|
|
if 'scraped' in st.session_state and st.session_state.scraped: |
|
st.subheader("Ask a Question") |
|
query = st.text_input("Enter your question:") |
|
if query: |
|
if st.button("Get Answer"): |
|
answer = ask_question(query) |
|
st.write(answer) |
|
|