Spaces:
Runtime error
Runtime error
added extract keyframes
Browse files
app.py
CHANGED
@@ -1,32 +1,42 @@
|
|
1 |
import gradio as gr
|
2 |
from textblob import TextBlob
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
def sentiment_analysis(text: str) -> dict:
|
5 |
-
"""
|
6 |
-
Analyze the sentiment of the given text.
|
7 |
-
|
8 |
-
Args:
|
9 |
-
text (str): The text to analyze
|
10 |
-
|
11 |
-
Returns:
|
12 |
-
dict: A dictionary containing polarity, subjectivity, and assessment
|
13 |
-
"""
|
14 |
-
blob = TextBlob(text)
|
15 |
-
sentiment = blob.sentiment
|
16 |
-
|
17 |
-
return {
|
18 |
-
"polarity": round(sentiment.polarity, 2), # -1 (negative) to 1 (positive)
|
19 |
-
"subjectivity": round(sentiment.subjectivity, 2), # 0 (objective) to 1 (subjective)
|
20 |
-
"assessment": "positive" if sentiment.polarity > 0 else "negative" if sentiment.polarity < 0 else "neutral"
|
21 |
-
}
|
22 |
|
23 |
# Create the Gradio interface
|
24 |
demo = gr.Interface(
|
25 |
-
fn=
|
26 |
-
inputs=
|
|
|
|
|
|
|
|
|
27 |
outputs=gr.JSON(),
|
28 |
title="Text Sentiment Analysis",
|
29 |
-
description="
|
30 |
)
|
31 |
|
32 |
# Launch the interface and MCP server
|
|
|
1 |
import gradio as gr
|
2 |
from textblob import TextBlob
|
3 |
+
import utils
|
4 |
+
import tempfile
|
5 |
+
|
6 |
+
|
7 |
+
def answer_video_question(query : str, url : str, file : bytes) -> dict:
|
8 |
+
# Either `file` or `url` must be provided
|
9 |
+
if file is not None:
|
10 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_vid:
|
11 |
+
temp_vid.write(file.read())
|
12 |
+
temp_video_path = temp_vid.name
|
13 |
+
|
14 |
+
# Output frame folder
|
15 |
+
frame_output_path = './cache/uploaded_video/frames'
|
16 |
+
extract_keyframes(temp_video_path)
|
17 |
+
|
18 |
+
return {"out_vid_frame_from_file":frame_output_path}
|
19 |
+
|
20 |
+
elif url:
|
21 |
+
files_path = download_video(url)
|
22 |
+
extract_keyframes(files_path['video_path'])
|
23 |
+
return {"out_vid_path_from_url":}
|
24 |
+
|
25 |
+
else:
|
26 |
+
return {"error": "Please provide a movie file or URL."}
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
# Create the Gradio interface
|
30 |
demo = gr.Interface(
|
31 |
+
fn=answer_video_question,
|
32 |
+
inputs=[
|
33 |
+
gr.Textbox(placeholder="Enter Query about the movie", label="Query"),
|
34 |
+
gr.Textbox(placeholder="Paste the URL of the movie", label="Movie URL (optional)"),
|
35 |
+
gr.File(label="Upload Movie File (optional)")
|
36 |
+
],
|
37 |
outputs=gr.JSON(),
|
38 |
title="Text Sentiment Analysis",
|
39 |
+
description="Ask a question about a movie. You can provide a movie via a URL or by uploading a file. The movie will be cached and deleted when the Space goes to sleep."
|
40 |
)
|
41 |
|
42 |
# Launch the interface and MCP server
|
utils.py
CHANGED
@@ -63,4 +63,65 @@ def download_video(url):
|
|
63 |
return {
|
64 |
"video_path": video_filename,
|
65 |
"audio_path": audio_filename,
|
66 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
return {
|
64 |
"video_path": video_filename,
|
65 |
"audio_path": audio_filename,
|
66 |
+
}
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
import cv2
|
71 |
+
import os
|
72 |
+
from skimage.metrics import structural_similarity as ssim
|
73 |
+
|
74 |
+
|
75 |
+
def is_significantly_different(img1, img2, threshold=0.4):
|
76 |
+
"""Check if two images are significantly different using SSIM.
|
77 |
+
Args:
|
78 |
+
img1 (numpy.ndarray): First image.
|
79 |
+
img2 (numpy.ndarray): Second image.
|
80 |
+
threshold (float): SSIM threshold to determine significant difference.
|
81 |
+
Returns:
|
82 |
+
bool: True if images are significantly different, False otherwise.
|
83 |
+
"""
|
84 |
+
grayA = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
|
85 |
+
grayB = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
|
86 |
+
score, _ = ssim(grayA, grayB, full=True)
|
87 |
+
return score < threshold # Lower score means more different
|
88 |
+
|
89 |
+
|
90 |
+
|
91 |
+
def extract_keyframes(video_path, diff_threshold=0.4):
|
92 |
+
"""Extract key frames from a video based on significant differences.
|
93 |
+
Args:
|
94 |
+
video_path (str): Path to the input video file.
|
95 |
+
output_path (str): Directory to save the extracted key frames.
|
96 |
+
diff_threshold (float): SSIM threshold to determine significant difference.
|
97 |
+
"""
|
98 |
+
cap = cv2.VideoCapture(video_path)
|
99 |
+
frame_id = 0
|
100 |
+
saved_id = 0
|
101 |
+
success, prev_frame = cap.read()
|
102 |
+
|
103 |
+
if not success:
|
104 |
+
print("Failed to read video.")
|
105 |
+
return
|
106 |
+
|
107 |
+
output_path='./cache/video/frames'
|
108 |
+
if not os.path.exists(output_path):
|
109 |
+
os.mkdir(output_path)
|
110 |
+
|
111 |
+
while True:
|
112 |
+
success, frame = cap.read()
|
113 |
+
if not success:
|
114 |
+
break
|
115 |
+
frame_id += 1
|
116 |
+
|
117 |
+
if is_significantly_different(prev_frame, frame, threshold=diff_threshold):
|
118 |
+
filename = os.path.join("./cache/video/frames/",f"keyframe_{saved_id:04d}.jpg")
|
119 |
+
cv2.imwrite(filename, frame)
|
120 |
+
prev_frame = frame
|
121 |
+
saved_id += 1
|
122 |
+
|
123 |
+
cap.release()
|
124 |
+
print(f"Extracted {saved_id} key frames.")
|
125 |
+
|
126 |
+
# Example usage
|
127 |
+
extract_keyframes(video_path)
|