import gradio as gr from transformers import pipeline # 选择 Hugging Face 预训练模型 classifier = pipeline("image-classification", model="microsoft/beit-base-patch16-224") # 定义分类函数 def classify_image(image): predictions = classifier(image) return {pred["label"]: float(pred["score"]) for pred in predictions} # 创建 Gradio 界面 demo = gr.Interface(fn=classify_image, inputs="image", outputs="label", title="Image Classification Demo") demo.launch()