|
|
|
from typing import Optional |
|
import torch |
|
from diffusers.utils import USE_PEFT_BACKEND |
|
from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear |
|
from diffusers.models.normalization import AdaGroupNorm |
|
from diffusers.models.activations import get_activation |
|
from diffusers.models.attention_processor import SpatialNorm |
|
from diffusers.models.resnet import upsample_2d, downsample_2d, Downsample2D, Upsample2D |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from functools import partial |
|
from .SPADEGroupNorm import SPADEGroupNorm |
|
|
|
|
|
class ResnetBlock2D(nn.Module): |
|
r""" |
|
A Resnet block. |
|
|
|
Parameters: |
|
in_channels (`int`): The number of channels in the input. |
|
out_channels (`int`, *optional*, default to be `None`): |
|
The number of output channels for the first conv2d layer. If None, same as `in_channels`. |
|
dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use. |
|
temb_channels (`int`, *optional*, default to `512`): the number of channels in timestep embedding. |
|
groups (`int`, *optional*, default to `32`): The number of groups to use for the first normalization layer. |
|
groups_out (`int`, *optional*, default to None): |
|
The number of groups to use for the second normalization layer. if set to None, same as `groups`. |
|
eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization. |
|
non_linearity (`str`, *optional*, default to `"swish"`): the activation function to use. |
|
time_embedding_norm (`str`, *optional*, default to `"default"` ): Time scale shift config. |
|
By default, apply timestep embedding conditioning with a simple shift mechanism. Choose "scale_shift" or |
|
"ada_group" for a stronger conditioning with scale and shift. |
|
kernel (`torch.FloatTensor`, optional, default to None): FIR filter, see |
|
[`~models.resnet.FirUpsample2D`] and [`~models.resnet.FirDownsample2D`]. |
|
output_scale_factor (`float`, *optional*, default to be `1.0`): the scale factor to use for the output. |
|
use_in_shortcut (`bool`, *optional*, default to `True`): |
|
If `True`, add a 1x1 nn.conv2d layer for skip-connection. |
|
up (`bool`, *optional*, default to `False`): If `True`, add an upsample layer. |
|
down (`bool`, *optional*, default to `False`): If `True`, add a downsample layer. |
|
conv_shortcut_bias (`bool`, *optional*, default to `True`): If `True`, adds a learnable bias to the |
|
`conv_shortcut` output. |
|
conv_2d_out_channels (`int`, *optional*, default to `None`): the number of channels in the output. |
|
If None, same as `out_channels`. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
*, |
|
in_channels: int, |
|
out_channels: Optional[int] = None, |
|
conv_shortcut: bool = False, |
|
dropout: float = 0.0, |
|
temb_channels: int = 512, |
|
groups: int = 32, |
|
groups_out: Optional[int] = None, |
|
pre_norm: bool = True, |
|
eps: float = 1e-6, |
|
non_linearity: str = "swish", |
|
skip_time_act: bool = False, |
|
time_embedding_norm: str = "default", |
|
kernel: Optional[torch.FloatTensor] = None, |
|
output_scale_factor: float = 1.0, |
|
use_in_shortcut: Optional[bool] = None, |
|
up: bool = False, |
|
down: bool = False, |
|
conv_shortcut_bias: bool = True, |
|
conv_2d_out_channels: Optional[int] = None, |
|
SPADE_chs = (320, 640, 1280, 1280), |
|
normalization_type = None, |
|
half_the_ch = False, |
|
is_crossAttn = None |
|
|
|
): |
|
super().__init__() |
|
self.pre_norm = pre_norm |
|
self.pre_norm = True |
|
self.in_channels = in_channels |
|
out_channels = in_channels if out_channels is None else out_channels |
|
self.out_channels = out_channels |
|
self.use_conv_shortcut = conv_shortcut |
|
self.up = up |
|
self.down = down |
|
self.output_scale_factor = output_scale_factor |
|
self.time_embedding_norm = time_embedding_norm |
|
self.skip_time_act = skip_time_act |
|
self.normalization_type = normalization_type |
|
self.SPADE_chs = SPADE_chs |
|
self.is_crossAttn = is_crossAttn |
|
|
|
linear_cls = nn.Linear if USE_PEFT_BACKEND else LoRACompatibleLinear |
|
conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv |
|
|
|
if groups_out is None: |
|
groups_out = groups |
|
|
|
if self.time_embedding_norm == "ada_group": |
|
self.norm1 = AdaGroupNorm(temb_channels, in_channels, groups, eps=eps) |
|
elif self.time_embedding_norm == "spatial": |
|
self.norm1 = SpatialNorm(in_channels, temb_channels) |
|
elif self.normalization_type == "SPADE": |
|
self.norm1 = SPADEGroupNorm(in_channels=in_channels, out_channels=out_channels if not half_the_ch else int(out_channels / 2), n_hidden=out_channels, |
|
groups=groups, eps=eps) |
|
else: |
|
self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True) |
|
|
|
self.conv1 = conv_cls(in_channels, out_channels, kernel_size=3, stride=1, padding=1) |
|
|
|
if temb_channels is not None: |
|
if self.time_embedding_norm == "default": |
|
self.time_emb_proj = linear_cls(temb_channels, out_channels) |
|
elif self.time_embedding_norm == "scale_shift": |
|
self.time_emb_proj = linear_cls(temb_channels, 2 * out_channels) |
|
elif self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial": |
|
self.time_emb_proj = None |
|
else: |
|
raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ") |
|
else: |
|
self.time_emb_proj = None |
|
|
|
if self.time_embedding_norm == "ada_group": |
|
self.norm2 = AdaGroupNorm(temb_channels, out_channels, groups_out, eps=eps) |
|
elif self.time_embedding_norm == "spatial": |
|
self.norm2 = SpatialNorm(out_channels, temb_channels) |
|
elif self.normalization_type == "SPADE": |
|
self.norm2 = SPADEGroupNorm(in_channels=out_channels, out_channels=out_channels, n_hidden=out_channels, |
|
groups=groups_out, eps=eps) |
|
else: |
|
self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True) |
|
|
|
self.dropout = torch.nn.Dropout(dropout) |
|
conv_2d_out_channels = conv_2d_out_channels or out_channels |
|
self.conv2 = conv_cls(out_channels, conv_2d_out_channels, kernel_size=3, stride=1, padding=1) |
|
|
|
self.nonlinearity = get_activation(non_linearity) |
|
|
|
self.upsample = self.downsample = None |
|
if self.up: |
|
if kernel == "fir": |
|
fir_kernel = (1, 3, 3, 1) |
|
self.upsample = lambda x: upsample_2d(x, kernel=fir_kernel) |
|
elif kernel == "sde_vp": |
|
self.upsample = partial(F.interpolate, scale_factor=2.0, mode="nearest") |
|
else: |
|
self.upsample = Upsample2D(in_channels, use_conv=False) |
|
elif self.down: |
|
if kernel == "fir": |
|
fir_kernel = (1, 3, 3, 1) |
|
self.downsample = lambda x: downsample_2d(x, kernel=fir_kernel) |
|
elif kernel == "sde_vp": |
|
self.downsample = partial(F.avg_pool2d, kernel_size=2, stride=2) |
|
else: |
|
self.downsample = Downsample2D(in_channels, use_conv=False, padding=1, name="op") |
|
|
|
self.use_in_shortcut = self.in_channels != conv_2d_out_channels if use_in_shortcut is None else use_in_shortcut |
|
|
|
self.conv_shortcut = None |
|
if self.use_in_shortcut: |
|
self.conv_shortcut = conv_cls( |
|
in_channels, conv_2d_out_channels, kernel_size=1, stride=1, padding=0, bias=conv_shortcut_bias |
|
) |
|
|
|
def forward(self, input_tensor, temb, scale: float = 1.0, |
|
segmaps=None): |
|
hidden_states = input_tensor |
|
|
|
if self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial": |
|
hidden_states = self.norm1(hidden_states, temb) |
|
elif self.normalization_type == "SPADE" and segmaps != None: |
|
if self.is_crossAttn: |
|
i = self.SPADE_chs.index(hidden_states.size(1)) |
|
segmap = segmaps[i] |
|
if segmap.shape != hidden_states.shape: |
|
segmap = F.interpolate(segmap, size=hidden_states.size()[2:], mode='nearest') |
|
elif self.is_crossAttn != None and not self.is_crossAttn: |
|
segmap = segmaps[-1] |
|
|
|
hidden_states = self.norm1(hidden_states, segmap) |
|
|
|
else: |
|
hidden_states = self.norm1(hidden_states) |
|
|
|
hidden_states = self.nonlinearity(hidden_states) |
|
|
|
if self.upsample is not None: |
|
|
|
if hidden_states.shape[0] >= 64: |
|
input_tensor = input_tensor.contiguous() |
|
hidden_states = hidden_states.contiguous() |
|
input_tensor = ( |
|
self.upsample(input_tensor, scale=scale) |
|
if isinstance(self.upsample, Upsample2D) |
|
else self.upsample(input_tensor) |
|
) |
|
hidden_states = ( |
|
self.upsample(hidden_states, scale=scale) |
|
if isinstance(self.upsample, Upsample2D) |
|
else self.upsample(hidden_states) |
|
) |
|
elif self.downsample is not None: |
|
input_tensor = ( |
|
self.downsample(input_tensor, scale=scale) |
|
if isinstance(self.downsample, Downsample2D) |
|
else self.downsample(input_tensor) |
|
) |
|
hidden_states = ( |
|
self.downsample(hidden_states, scale=scale) |
|
if isinstance(self.downsample, Downsample2D) |
|
else self.downsample(hidden_states) |
|
) |
|
|
|
hidden_states = self.conv1(hidden_states, scale) if not USE_PEFT_BACKEND else self.conv1(hidden_states) |
|
|
|
if self.time_emb_proj is not None: |
|
if not self.skip_time_act: |
|
temb = self.nonlinearity(temb) |
|
temb = ( |
|
self.time_emb_proj(temb, scale)[:, :, None, None] |
|
if not USE_PEFT_BACKEND |
|
else self.time_emb_proj(temb)[:, :, None, None] |
|
) |
|
|
|
if temb is not None and self.time_embedding_norm == "default": |
|
hidden_states = hidden_states + temb |
|
|
|
if self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial": |
|
hidden_states = self.norm2(hidden_states, temb) |
|
elif self.normalization_type == "SPADE" and segmaps != None: |
|
if self.is_crossAttn: |
|
i = self.SPADE_chs.index(hidden_states.size(1)) |
|
segmap = segmaps[i] |
|
elif self.is_crossAttn != None and not self.is_crossAttn: |
|
segmap = segmaps[-1] |
|
|
|
hidden_states = self.norm2(hidden_states, segmap) |
|
else: |
|
hidden_states = self.norm2(hidden_states) |
|
|
|
if temb is not None and self.time_embedding_norm == "scale_shift": |
|
scale, shift = torch.chunk(temb, 2, dim=1) |
|
hidden_states = hidden_states * (1 + scale) + shift |
|
|
|
hidden_states = self.nonlinearity(hidden_states) |
|
|
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.conv2(hidden_states, scale) if not USE_PEFT_BACKEND else self.conv2(hidden_states) |
|
|
|
if self.conv_shortcut is not None: |
|
input_tensor = ( |
|
self.conv_shortcut(input_tensor, scale) if not USE_PEFT_BACKEND else self.conv_shortcut(input_tensor) |
|
) |
|
|
|
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor |
|
|
|
return output_tensor |