lukawskikacper's picture
Vibe coded implementation (with some manual fixes)
74cf6bd
raw
history blame
23.5 kB
import uuid
from typing import List, Dict, Any, Optional
import re
from datetime import datetime
from sentence_transformers import SentenceTransformer
from qdrant_client.http import models
from youtube_transcript_api import YouTubeTranscriptApi
import yt_dlp
from app.models.video import VideoSegment, Video, SearchResult
from app.services.qdrant_service import qdrant_client
# Initialize the sentence transformer model
model = SentenceTransformer("sentence-transformers/static-retrieval-mrl-en-v1")
# Collection names
COLLECTION_NAME = "video_segments"
PROCESSED_VIDEOS_COLLECTION = "processed_videos"
def _fetch_youtube_metadata(video_id: str, video: Optional[Video] = None) -> Video:
"""Helper function to fetch video metadata from YouTube using yt-dlp."""
import logging
if not video:
video = Video(video_id=video_id)
try:
logging.info(f"Fetching metadata for video {video_id} from YouTube")
# Configure yt-dlp options
ydl_opts = {
"skip_download": True, # Don't download the video
"quiet": True, # Don't print progress
"no_warnings": True, # Don't print warnings
"extract_flat": True, # Don't extract videos in playlists
"format": "best", # Best quality (doesn't matter since we're not downloading)
}
# Use yt-dlp to extract video info
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info = ydl.extract_info(
f"https://www.youtube.com/watch?v={video_id}", download=False
)
# Set video properties if available
if info.get("title"):
video.title = info.get("title")
if info.get("description"):
video.description = info.get("description")
if info.get("uploader"):
video.channel = info.get("uploader")
logging.info(
f"Successfully retrieved video metadata: title='{video.title}', channel='{video.channel}'"
)
except Exception as meta_error:
logging.warning(f"Could not fetch metadata from YouTube: {str(meta_error)}")
if not video.title:
video.title = f"Video {video_id}"
return video
# Ensure collections exist
def ensure_collection_exists():
"""Ensure the required collections exist in Qdrant."""
import logging
try:
logging.info("Checking Qdrant collections")
collections = qdrant_client.get_collections().collections
collection_names = [collection.name for collection in collections]
logging.info(f"Existing collections: {collection_names}")
# Create video segments collection if it doesn't exist
if COLLECTION_NAME not in collection_names:
logging.info(f"Creating collection: {COLLECTION_NAME}")
vector_size = model.get_sentence_embedding_dimension()
qdrant_client.create_collection(
collection_name=COLLECTION_NAME,
vectors_config=models.VectorParams(
size=vector_size,
distance=models.Distance.COSINE,
),
)
logging.info(
f"Successfully created {COLLECTION_NAME} collection with vector size {vector_size}"
)
# Create processed videos collection if it doesn't exist
if PROCESSED_VIDEOS_COLLECTION not in collection_names:
logging.info(f"Creating collection: {PROCESSED_VIDEOS_COLLECTION}")
vector_size = model.get_sentence_embedding_dimension()
qdrant_client.create_collection(
collection_name=PROCESSED_VIDEOS_COLLECTION,
vectors_config=models.VectorParams(
size=vector_size,
distance=models.Distance.COSINE,
),
)
qdrant_client.create_payload_index(
collection_name=PROCESSED_VIDEOS_COLLECTION,
field_name="video_id",
field_schema=models.PayloadSchemaType.KEYWORD,
)
qdrant_client.create_payload_index(
collection_name=PROCESSED_VIDEOS_COLLECTION,
field_name="created_at",
field_schema=models.IntegerIndexParams(
type=models.IntegerIndexType.INTEGER,
range=True,
),
)
logging.info(
f"Successfully created {PROCESSED_VIDEOS_COLLECTION} collection with vector size {vector_size}"
)
except Exception as e:
import traceback
logging.error(f"Error ensuring collections exist: {str(e)}")
logging.error(traceback.format_exc())
raise
def get_embeddings(text: str) -> List[float]:
"""Get embeddings for the given text using SentenceTransformer."""
return model.encode(text).tolist()
def extract_video_id(youtube_url: str) -> str:
"""Extract YouTube video ID from URL."""
import logging
logging.info(f"Extracting video ID from URL: {youtube_url}")
# Match patterns like: https://www.youtube.com/watch?v=VIDEO_ID or https://youtu.be/VIDEO_ID
patterns = [
r"(?:youtube\.com/watch\?v=|youtu\.be/)([\w-]+)",
r"(?:youtube\.com/embed/)([\w-]+)",
r"(?:youtube\.com/v/)([\w-]+)",
]
for pattern in patterns:
match = re.search(pattern, youtube_url)
if match:
video_id = match.group(1)
logging.info(f"Extracted video ID: {video_id}")
return video_id
# If no pattern matches, assume the input might be a direct video ID
if re.match(r"^[\w-]+$", youtube_url):
logging.info(f"Using direct video ID: {youtube_url}")
return youtube_url
logging.error(f"Failed to extract video ID from URL: {youtube_url}")
raise ValueError(f"Could not extract video ID from URL: {youtube_url}")
def get_video_transcript(video_id: str) -> List[Dict[str, Any]]:
"""
Get transcript for a YouTube video in any available language.
Will try to get transcripts in this priority:
1. English transcript (if available)
2. Any available transcript translated to English (if translatable)
3. Any available transcript in its original language
"""
import logging
import traceback
try:
# Try to get available transcript languages
transcript_list = YouTubeTranscriptApi.list_transcripts(video_id)
# First, look for English transcript
english_transcript = None
other_transcripts = []
# Categorize available transcripts
for transcript_item in transcript_list:
if transcript_item.language_code == "en":
english_transcript = transcript_item
else:
other_transcripts.append(transcript_item)
# 1. Try English first if available
if english_transcript:
try:
logging.info("Found English transcript, using it directly")
return english_transcript.fetch()
except Exception as e:
logging.warning(f"Failed to fetch English transcript: {str(e)}")
# 2. Try translatable transcripts
translatable_transcripts = [t for t in other_transcripts if t.is_translatable]
for transcript_item in translatable_transcripts:
try:
logging.info(
f"Trying to translate {transcript_item.language_code} transcript to English"
)
translated = transcript_item.translate("en").fetch()
logging.info(
f"Successfully translated {transcript_item.language_code} transcript to English"
)
return translated
except Exception as e:
logging.warning(
f"Failed to translate {transcript_item.language_code} transcript: {str(e)}"
)
# 3. Try any transcript in original language
for transcript_item in other_transcripts:
try:
logging.info(
f"Using non-translated {transcript_item.language_code} transcript"
)
return transcript_item.fetch()
except Exception as e:
logging.warning(
f"Failed to fetch {transcript_item.language_code} transcript: {str(e)}"
)
# If we get here, no transcripts worked
available_langs = [t.language_code for t in transcript_list]
raise ValueError(
f"No usable transcripts found for video {video_id}. Available languages: {available_langs}"
)
except Exception as e:
logging.error(f"Transcript API error for video {video_id}: {str(e)}")
logging.error(traceback.format_exc())
raise ValueError(f"Could not get transcript for video {video_id}: {str(e)}")
def store_processed_video(video: Video) -> bool:
"""Store a processed video in Qdrant."""
try:
# Get a simple embedding for the video ID
vector = get_embeddings(f"video_{video.video_id}")
# Prepare payload
payload = video.model_dump()
# Store in Qdrant
qdrant_client.upsert(
collection_name=PROCESSED_VIDEOS_COLLECTION,
points=[
models.PointStruct(
id=uuid.uuid4().hex,
vector=vector,
payload=payload,
),
],
)
return True
except Exception as e:
print(f"Error storing processed video: {e}")
return False
def get_processed_videos(limit: int = 10) -> List[Video]:
"""Get recently processed videos ordered by creation time."""
try:
# Scroll through the processed videos collection
scroll_result = qdrant_client.scroll(
collection_name=PROCESSED_VIDEOS_COLLECTION,
limit=limit,
with_payload=True,
order_by=models.OrderBy(key="created_at", direction=models.Direction.DESC),
)
# Extract videos from the result
videos = []
for point in scroll_result[0]:
# Convert payload to Video
video = Video(**point.payload)
videos.append(video)
# Sort by created_at timestamp (most recent first)
videos.sort(key=lambda x: x.created_at or "", reverse=True)
return videos[:limit]
except Exception as e:
print(f"Error getting processed videos: {e}")
return []
def process_video(youtube_url: str) -> Video:
"""Process a YouTube video to extract and store transcript segments."""
import logging
import traceback
logging.info(f"Processing video URL: {youtube_url}")
transcript = None
video_id = None
# Extract video ID and get transcript
try:
# Extract video ID
video_id = extract_video_id(youtube_url)
logging.info(f"Successfully extracted video ID: {video_id}")
# Check if video has already been processed
existing_video = get_video_by_id(video_id)
if existing_video and existing_video.processed:
logging.info(
f"Video {video_id} has already been processed. Skipping processing."
)
return existing_video
# Create basic video object with current timestamp
current_time = int(datetime.utcnow().timestamp())
video = Video(video_id=video_id, created_at=current_time)
# Get video metadata from YouTube using the helper function
try:
video = _fetch_youtube_metadata(video_id, video)
except Exception as meta_error:
logging.warning(
f"Error fetching YouTube metadata during processing: {str(meta_error)}"
)
# Continue with processing even if metadata fetch fails
# Get transcript
logging.info(f"Fetching transcript for video ID: {video_id}")
transcript = get_video_transcript(video_id)
logging.info(
f"Successfully retrieved transcript with {len(transcript)} entries"
)
# If we couldn't get metadata and have a transcript, try to extract a title from transcript
if (
(not video.title or video.title == f"Video {video_id}")
and transcript
and len(transcript) > 0
):
# Handle different transcript formats
try:
# Check if transcript is a list of dictionaries (original format)
if isinstance(transcript[0], dict) and "text" in transcript[0]:
video.title = f"{transcript[0]['text'][:30]}..."
# Check if transcript is a list of objects with text attribute
elif hasattr(transcript[0], "text"):
video.title = f"{transcript[0].text[:30]}..."
# If it's another format, just use the string representation of first item
else:
first_item_str = str(transcript[0])[:30]
video.title = f"{first_item_str}..."
logging.info(f"Set video title from transcript: {video.title}")
except Exception as title_error:
logging.warning(
f"Could not set title from transcript: {str(title_error)}"
)
except Exception as e:
logging.error(f"Error in initial video processing: {str(e)}")
logging.error(traceback.format_exc())
raise
# Process transcript into segments
try:
# Process transcript into overlapping 30-second segments with 10-second overlap
logging.info(f"Processing {len(transcript)} transcript entries into segments")
segments = []
# First, normalize the transcript to a standard format
normalized_transcript = []
for item in transcript:
if (
isinstance(item, dict)
and "text" in item
and "start" in item
and "duration" in item
):
# Original dictionary format
normalized_transcript.append(
{
"text": item["text"],
"start": item["start"],
"duration": item["duration"],
}
)
elif (
hasattr(item, "text")
and hasattr(item, "start")
and hasattr(item, "duration")
):
# Object with attributes
normalized_transcript.append(
{"text": item.text, "start": item.start, "duration": item.duration}
)
else:
# Unknown format, try to extract what we can
logging.warning(
f"Encountered unknown transcript item format: {type(item)}"
)
try:
# Convert to string if we can't determine the structure
text = str(item)
# Use index as a timestamp approximation
idx = transcript.index(item)
normalized_transcript.append(
{
"text": text,
"start": float(idx * 5), # Approximate 5 seconds per item
"duration": 5.0,
}
)
except Exception as e:
logging.error(f"Failed to normalize transcript item: {str(e)}")
continue
# Use the normalized transcript for segment processing
for i in range(len(normalized_transcript)):
# Find segments that form approximately 30 seconds
segment_text = []
start_time = normalized_transcript[i]["start"]
end_time = start_time
current_index = i
while (
current_index < len(normalized_transcript)
and end_time - start_time < 30
):
segment_text.append(normalized_transcript[current_index]["text"])
end_time = (
normalized_transcript[current_index]["start"]
+ normalized_transcript[current_index]["duration"]
)
current_index += 1
if segment_text: # Only create segment if we have text
segment_id = f"{video_id}_{i}"
text = " ".join(segment_text)
# Create VideoSegment
segment = VideoSegment(
text=text,
start=start_time,
end=end_time,
segment_id=segment_id,
video_id=video_id,
)
segments.append(segment)
# Skip forward with 10-second overlap (if we're not at the end)
if (
i + 1 < len(normalized_transcript)
and normalized_transcript[i + 1]["start"] < end_time - 10
):
# Find the next segment that starts at least 20 seconds after our current start
while (
i + 1 < len(normalized_transcript)
and normalized_transcript[i + 1]["start"] < start_time + 20
):
i += 1
logging.info(f"Created {len(segments)} segments from transcript")
# Store segments in Qdrant
logging.info("Ensuring Qdrant collections exist")
ensure_collection_exists()
# Store each segment
logging.info(f"Storing {len(segments)} segments in Qdrant")
for segment in segments:
store_segment(segment)
except Exception as e:
logging.error(f"Error processing transcript segments: {str(e)}")
logging.error(traceback.format_exc())
raise
# Mark video as processed and store it
try:
logging.info(f"Marking video {video_id} as processed")
video.processed = True
# Store the processed video in Qdrant
logging.info("Storing processed video in Qdrant")
store_result = store_processed_video(video)
if store_result:
logging.info(f"Successfully stored processed video: {video_id}")
else:
logging.warning(f"Failed to store processed video in Qdrant: {video_id}")
return video
except Exception as e:
logging.error(f"Error storing processed video: {str(e)}")
logging.error(traceback.format_exc())
raise
def store_segment(segment: VideoSegment) -> bool:
"""Store a video segment in Qdrant."""
import logging
try:
# Get embeddings
logging.debug(f"Getting embeddings for segment {segment.segment_id}")
vector = get_embeddings(segment.text)
# Prepare payload
payload = segment.model_dump()
# Store in Qdrant
point_id = uuid.uuid4().hex
logging.debug(
f"Storing segment {segment.segment_id} in Qdrant with point ID {point_id}"
)
qdrant_client.upsert(
collection_name=COLLECTION_NAME,
points=[
models.PointStruct(
id=point_id,
vector=vector,
payload=payload,
),
],
)
return True
except Exception as e:
import traceback
logging.error(f"Error storing segment {segment.segment_id}: {str(e)}")
logging.error(traceback.format_exc())
return False
def search_video_segments(
query: str, video_id: Optional[str] = None, limit: int = 5
) -> List[SearchResult]:
"""Search for video segments based on the provided query."""
# Get query embeddings
query_vector = get_embeddings(query)
# Prepare filter if video_id is provided
filter_param = None
if video_id:
filter_param = models.Filter(
must=[
models.FieldCondition(
key="video_id",
match=models.MatchValue(value=video_id),
),
],
)
# Search in Qdrant
search_result = qdrant_client.search(
collection_name=COLLECTION_NAME,
query_vector=query_vector,
limit=limit,
query_filter=filter_param,
)
# Format results
results = []
for scored_point in search_result:
# Convert payload to VideoSegment
segment = VideoSegment(**scored_point.payload)
# Create SearchResult
result = SearchResult(
score=scored_point.score,
segment=segment,
)
results.append(result)
return results
def get_all_segments(video_id: str) -> List[VideoSegment]:
"""Get all segments for a specific video, ordered by start time."""
# Prepare filter for the video_id
filter_param = models.Filter(
must=[
models.FieldCondition(
key="video_id",
match=models.MatchValue(value=video_id),
),
],
)
# Search in Qdrant without vector, just to get all segments
scroll_result = qdrant_client.scroll(
collection_name=COLLECTION_NAME,
scroll_filter=filter_param,
limit=10000, # Adjust based on expected maximum segments
)
# Format results
segments = []
for point in scroll_result[0]:
# Convert payload to VideoSegment
segment = VideoSegment(**point.payload)
segments.append(segment)
# Sort by start time
segments.sort(key=lambda x: x.start)
return segments
def get_video_by_id(video_id: str) -> Optional[Video]:
"""Get a specific video by its video_id. If not found in database, attempt to fetch from YouTube."""
import logging
try:
# Create filter for the video_id
filter_param = models.Filter(
must=[
models.FieldCondition(
key="video_id",
match=models.MatchValue(value=video_id),
),
],
)
# Search in the processed_videos collection
scroll_result = qdrant_client.scroll(
collection_name=PROCESSED_VIDEOS_COLLECTION,
scroll_filter=filter_param,
limit=1, # We only need one result
with_payload=True,
)
# Check if any results were found
if scroll_result[0]:
# Convert payload to Video
video = Video(**scroll_result[0][0].payload)
# If video exists but doesn't have title, try to fetch it from YouTube
if not video.title or video.title == f"Video {video_id}":
video = _fetch_youtube_metadata(video_id, video)
return video
# If video not found in database, fetch basic metadata from YouTube
logging.info(f"Video {video_id} not found in database, fetching from YouTube")
video = Video(video_id=video_id)
return _fetch_youtube_metadata(video_id, video)
except Exception as e:
logging.error(f"Error getting video by ID {video_id}: {str(e)}")
# Return a basic video object with just the ID
return Video(video_id=video_id, title=f"Video {video_id}")