nifleisch
feat: add core logic for project
2c50826
raw
history blame
2.81 kB
import os
from typing import Dict
import torch
from PIL import Image
from hpsv2.src.open_clip import create_model_and_transforms, get_tokenizer
import huggingface_hub
from hpsv2.utils import root_path, hps_version_map
class HPSMetric:
def __init__(self):
self.hps_version = "v2.1"
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.model_dict = {}
self._initialize_model()
def _initialize_model(self):
if not self.model_dict:
model, preprocess_train, preprocess_val = create_model_and_transforms(
'ViT-H-14',
'laion2B-s32B-b79K',
precision='amp',
device=self.device,
jit=False,
force_quick_gelu=False,
force_custom_text=False,
force_patch_dropout=False,
force_image_size=None,
pretrained_image=False,
image_mean=None,
image_std=None,
light_augmentation=True,
aug_cfg={},
output_dict=True,
with_score_predictor=False,
with_region_predictor=False
)
self.model_dict['model'] = model
self.model_dict['preprocess_val'] = preprocess_val
# Load checkpoint
if not os.path.exists(root_path):
os.makedirs(root_path)
cp = huggingface_hub.hf_hub_download("xswu/HPSv2", hps_version_map[self.hps_version])
checkpoint = torch.load(cp, map_location=self.device)
model.load_state_dict(checkpoint['state_dict'])
self.tokenizer = get_tokenizer('ViT-H-14')
model = model.to(self.device)
model.eval()
@property
def name(self) -> str:
return "hps"
def compute_score(
self,
image: Image.Image,
prompt: str,
) -> Dict[str, float]:
model = self.model_dict['model']
preprocess_val = self.model_dict['preprocess_val']
with torch.no_grad():
# Process the image
image_tensor = preprocess_val(image).unsqueeze(0).to(device=self.device, non_blocking=True)
# Process the prompt
text = self.tokenizer([prompt]).to(device=self.device, non_blocking=True)
# Calculate the HPS
with torch.cuda.amp.autocast():
outputs = model(image_tensor, text)
image_features, text_features = outputs["image_features"], outputs["text_features"]
logits_per_image = image_features @ text_features.T
hps_score = torch.diagonal(logits_per_image).cpu().numpy()
return {"hps": float(hps_score[0])}