File size: 12,366 Bytes
6e4be07
a4ef927
4928f34
a4ef927
4928f34
a4ef927
 
4928f34
a4ef927
4928f34
a4ef927
 
 
 
 
 
 
4928f34
6e4be07
4928f34
a4ef927
 
 
 
6e4be07
4928f34
a4ef927
 
 
 
4928f34
 
 
a4ef927
 
 
 
 
 
4928f34
a4ef927
 
 
 
 
4928f34
a4ef927
 
 
 
4928f34
a4ef927
 
 
 
4928f34
 
a4ef927
 
 
 
 
 
 
 
 
 
 
4928f34
a4ef927
 
 
 
4928f34
90b6e19
 
 
a4ef927
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90b6e19
a4ef927
 
 
 
 
 
 
 
 
 
 
4928f34
 
 
 
90b6e19
 
a4ef927
4928f34
90b6e19
 
 
 
 
a4ef927
4928f34
a4ef927
944c441
 
 
 
 
a4ef927
90b6e19
 
 
 
 
944c441
90b6e19
4928f34
a4ef927
4928f34
90b6e19
4928f34
 
90b6e19
 
944c441
a4ef927
90b6e19
 
 
 
 
 
 
 
4928f34
 
90b6e19
4928f34
 
 
 
 
 
 
 
 
 
90b6e19
a4ef927
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
616f92a
 
4928f34
616f92a
 
 
 
4928f34
616f92a
 
 
 
a4ef927
4928f34
 
 
 
 
 
 
 
 
 
 
 
a4ef927
 
90b6e19
009ec65
4928f34
a4ef927
 
 
 
 
 
 
 
90b6e19
4928f34
 
 
90b6e19
a4ef927
 
 
 
 
90b6e19
 
944c441
 
4928f34
 
 
 
 
944c441
a4ef927
 
 
4928f34
 
 
 
a4ef927
 
90b6e19
4928f34
90b6e19
 
a4ef927
009ec65
4928f34
a4ef927
 
 
 
 
 
 
 
 
 
90b6e19
 
 
 
 
a4ef927
90b6e19
 
 
a4ef927
 
 
4928f34
a4ef927
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
616f92a
a4ef927
 
 
 
 
 
 
 
90b6e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4ef927
 
 
 
 
 
 
 
4928f34
 
 
 
a4ef927
4928f34
 
a4ef927
 
 
 
 
4928f34
6e4be07
7284d62
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
import gradio as gr
import nltk
import os
import pandas as pd
from nltk.tokenize import TreebankWordTokenizer
from sklearn.metrics.pairwise import cosine_similarity
from sentence_transformers import SentenceTransformer
import graphviz
from typing import Tuple, Optional
from visuals.score_card import render_score_card  # Updated import
from visuals.layout import (
    render_page_header,
    render_core_reference,
    render_pipeline,
    render_pipeline_graph,
    render_pipeline_warning,
    render_strategy_alignment,
)  # Updated import

# Ensure NLTK data is downloaded
try:
    nltk.download("punkt", quiet=True)
except Exception as e:
    print(f"Error downloading NLTK data: {e}")

# Load SentenceTransformer model
model = SentenceTransformer("all-MiniLM-L6-v2")


def calculate_ttr(text: str) -> float:
    """Calculates Type-Token Ratio (TTR) for lexical diversity."""
    if not text:
        return 0.0
    words = text.split()
    unique_words = set(words)
    return len(unique_words) / len(words) if words else 0.0


def calculate_similarity(text1: str, text2: str) -> float:
    """Calculates cosine similarity between two texts."""
    embeddings = model.encode([text1, text2])
    return cosine_similarity([embeddings[0]], [embeddings[1]])[0][0]


def calculate_mad_score(ttr: float, similarity: float) -> float:
    """Calculates the MAD score."""
    return 0.3 * (1 - ttr) + 0.7 * similarity


def get_risk_level(mad_score: float) -> str:
    """Determines the risk level based on the MAD score."""
    if mad_score > 0.7:
        return "High"
    elif 0.4 <= mad_score <= 0.7:
        return "Medium"
    else:
        return "Low"


def process_data(file_obj, model_col: str, train_col: str, data_source: str) -> Tuple[
    Optional[str],
    Optional[bytes],
    Optional[str],
    Optional[str],
    Optional[float],
    Optional[float],
    Optional[float],
]:
    """Processes the uploaded file and calculates metrics."""
    try:
        if not file_obj:
            return "Error: No file uploaded.", None, None, None, None, None, None

        global uploaded_df
        df = uploaded_df.get("data")
        if df is None:
            return "Error: File not yet processed.", None, None, None, None, None, None

        if model_col not in df.columns or train_col not in df.columns:
            return (
                "Error: Selected columns not found in the file.",
                None,
                None,
                None,
                None,
                None,
                None,
            )

        output_text = " ".join(df[model_col].astype(str))
        train_text = " ".join(df[train_col].astype(str))

        ttr_output = calculate_ttr(output_text)
        ttr_train = calculate_ttr(train_text)
        similarity = calculate_similarity(output_text, train_text)
        mad_score = calculate_mad_score(ttr_output, similarity)
        risk_level = get_risk_level(mad_score)

        summary, details, explanation = render_score_card(
            ttr_output, ttr_train, similarity, mad_score, risk_level
        )
        evaluation_markdown = summary + details + explanation

        return (
            None,
            render_pipeline_graph(data_source),
            df.head().to_markdown(index=False, numalign="left", stralign="left"),
            evaluation_markdown,
            ttr_output,
            ttr_train,
            similarity,
        )
    except Exception as e:
        return f"An error occurred: {str(e)}", None, None, None, None, None, None


# Store uploaded DataFrame globally for later access
uploaded_df = {}


def update_dropdowns(file_obj) -> Tuple[gr.Dropdown, gr.Dropdown, str]:
    global uploaded_df
    if not file_obj:
        uploaded_df["data"] = None  # Clear cached file
        return (
            gr.update(choices=[], value=None),
            gr.update(choices=[], value=None),
            "No file uploaded.",
        )

    # Read the file and extract columns
    try:
        file_name = getattr(file_obj, "name", "")
        if file_name.endswith(".csv"):
            df = pd.read_csv(file_obj)
        elif file_name.endswith(".json"):
            df = pd.read_json(file_obj)
        else:
            return (
                gr.update(choices=[], value=None),
                gr.update(choices=[], value=None),
                "Invalid file type.",
            )

        uploaded_df["data"] = df
        columns = df.columns.tolist()
        preview = df.head().to_markdown(index=False, numalign="left", stralign="left")

        return (
            gr.update(choices=columns, value=None),
            gr.update(choices=columns, value=None),
            preview,
        )

    except Exception as e:
        return (
            gr.update(choices=[], value=None),
            gr.update(choices=[], value=None),
            f"Error reading file: {e}",
        )


def clear_all_fields():
    global uploaded_df
    uploaded_df.clear()  # Clear stored DataFrame
    return (
        None,  # file_input
        gr.update(choices=[], value=None),  # model_col_input
        gr.update(choices=[], value=None),  # train_col_input
        "",  # file_preview
        "",  # output_markdown
        "",  # warning_output
        None,  # ttr_output_metric
        None,  # ttr_train_metric
        None,  # similarity_metric
        render_pipeline_graph("Synthetic Generated Data"),  # pipeline_output default
    )


def main_interface():
    css = """
    .gradio-container {
        background: linear-gradient(-45deg, #e0f7fa, #e1f5fe, #f1f8e9, #fff3e0);
        background-size: 400% 400%;
        animation: oceanWaves 20s ease infinite;
    }
    @keyframes oceanWaves {
        0% { background-position: 0% 50%; }
        50% { background-position: 100% 50%; }
        100% { background-position: 0% 50%; }
    }
    """

    with gr.Blocks(css=css, title="MADGuard AI Explorer") as interface:
        gr.HTML(render_page_header())

        gr.Markdown(
            """
            > 🧠 **MADGuard AI Explorer** helps AI engineers, researchers, and MLOps teams simulate feedback loops in RAG pipelines and detect **Model Autophagy Disorder (MAD)** β€” where models start learning from their own outputs, leading to degraded performance.

            - Compare **real vs. synthetic input effects**
            - Visualize the data flow
            - Upload your `.csv` or `.json` data
            - Get immediate MAD risk diagnostics based on lexical diversity and semantic similarity
            """
        )

        with gr.Accordion("πŸ“š Research Reference", open=False):
            gr.HTML(render_core_reference())
        gr.HTML(
            """
            <div style="display: flex; flex-direction: column; align-items: center; margin-bottom: 20px;">
                <h3 style="text-align: center;">πŸ“½οΈ How to Use MADGuard AI Explorer</h3>
                <iframe width="720" height="405"
                        src="https://www.youtube.com/embed/qjMwvaBXQeY"
                        title="MADGuard AI Tutorial" frameborder="0"
                        allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture"
                        allowfullscreen></iframe>
            </div>
            """
        )

        gr.Markdown("## 1. Pipeline Simulation")
        data_source, description = render_pipeline(default="Synthetic Generated Data")

        gr.HTML(description)
        pipeline_output = gr.Image(type="filepath", label="Pipeline Graph")
        warning_output = gr.HTML()
        data_source.change(
            fn=render_pipeline_warning, inputs=data_source, outputs=warning_output
        )
        data_source.change(
            fn=render_pipeline_graph, inputs=data_source, outputs=pipeline_output
        )
        interface.load(
            fn=render_pipeline_graph,
            inputs=[data_source],
            outputs=[pipeline_output],
        )

        gr.Markdown("## 2. Upload CSV or JSON File")
        file_input = gr.File(
            file_types=[".csv", ".json"], label="Upload a CSV or JSON file"
        )
        clear_btn = gr.Button("🧹 Clear All")

        gr.Markdown(
            """
    πŸ“ **Note:**  
    - **Model Output Column**: Select the column that contains generated responses, completions, or predictions from your model.  
    - **Training Data Column**: Select the column that may be used for future training or fine-tuning.  
    This helps MADGuard simulate feedback loops by comparing lexical and semantic overlap between current output and future inputs.
    """
        )

        with gr.Row():
            model_col_input = gr.Dropdown(
                choices=[],
                value=None,
                label="Select column for model output",
                interactive=True,
            )
            train_col_input = gr.Dropdown(
                choices=[],
                value=None,
                label="Select column for future training data",
                interactive=True,
            )
        file_preview = gr.Markdown(label="πŸ“„ File Preview")

        output_markdown = gr.Markdown(label="πŸ” Evaluation Summary")

        with gr.Accordion("πŸ“‹ Research-Based Strategy Alignment", open=False):
            gr.HTML(render_strategy_alignment())

        with gr.Row():
            ttr_output_metric = gr.Number(label="Lexical Diversity (Output)")
            ttr_train_metric = gr.Number(label="Lexical Diversity (Training Set)")
            similarity_metric = gr.Number(label="Semantic Similarity (Cosine)")

        def handle_file_upload(file_obj, data_source_val):
            dropdowns = update_dropdowns(file_obj)
            graph = render_pipeline_graph(data_source_val)
            return *dropdowns, graph

        file_input.change(
            fn=handle_file_upload,
            inputs=[file_input, data_source],
            outputs=[model_col_input, train_col_input, file_preview, pipeline_output],
        )

        def process_and_generate(
            file_obj, model_col_val: str, train_col_val: str, data_source_val: str
        ):
            error, graph, preview, markdown, ttr_out, ttr_tr, sim = process_data(
                file_obj, model_col_val, train_col_val, data_source_val
            )
            if error:
                return error, graph, warning_output, preview, None, None, None, None
            return (
                "",
                graph,
                render_pipeline_warning(data_source_val),
                preview,
                markdown,
                ttr_out,
                ttr_tr,
                sim,
            )

        inputs = [file_input, model_col_input, train_col_input, data_source]
        outputs = [
            gr.Markdown(label="⚠️ Error Message"),
            pipeline_output,
            warning_output,
            file_preview,
            output_markdown,
            ttr_output_metric,
            ttr_train_metric,
            similarity_metric,
        ]
        clear_btn.click(
            fn=clear_all_fields,
            inputs=[],
            outputs=[
                file_input,
                model_col_input,
                train_col_input,
                file_preview,
                output_markdown,
                warning_output,
                ttr_output_metric,
                ttr_train_metric,
                similarity_metric,
                pipeline_output,
            ],
        )

        for input_component in inputs:
            input_component.change(
                fn=process_and_generate, inputs=inputs, outputs=outputs
            )

        gr.Markdown("---")
        gr.Markdown(
            """
        **The upcoming Pro version of MADGuard will allow:**
        - πŸ“‚ Bulk upload support for `.csv` files or folders of `.txt` documents  
        - πŸ“Š Automated batch scoring with trend visualizations over time  
        - 🧾 One-click export of audit-ready diagnostic reports

        [**πŸ“© Join the waitlist**](https://docs.google.com/forms/d/e/1FAIpQLSfAPPC_Gm7DQElQSWGSnoB6T5hMxb_rXSu48OC8E6TNGZuKgQ/viewform?usp=sharing&ouid=118007615320536574300)
        """
        )

    return interface


# Launch the Gradio interface
if __name__ == "__main__":
    interface = main_interface()
    interface.launch(server_name="0.0.0.0", server_port=7860)