File size: 12,366 Bytes
6e4be07 a4ef927 4928f34 a4ef927 4928f34 a4ef927 4928f34 a4ef927 4928f34 a4ef927 4928f34 6e4be07 4928f34 a4ef927 6e4be07 4928f34 a4ef927 4928f34 a4ef927 4928f34 a4ef927 4928f34 a4ef927 4928f34 a4ef927 4928f34 a4ef927 4928f34 a4ef927 4928f34 90b6e19 a4ef927 90b6e19 a4ef927 4928f34 90b6e19 a4ef927 4928f34 90b6e19 a4ef927 4928f34 a4ef927 944c441 a4ef927 90b6e19 944c441 90b6e19 4928f34 a4ef927 4928f34 90b6e19 4928f34 90b6e19 944c441 a4ef927 90b6e19 4928f34 90b6e19 4928f34 90b6e19 a4ef927 616f92a 4928f34 616f92a 4928f34 616f92a a4ef927 4928f34 a4ef927 90b6e19 009ec65 4928f34 a4ef927 90b6e19 4928f34 90b6e19 a4ef927 90b6e19 944c441 4928f34 944c441 a4ef927 4928f34 a4ef927 90b6e19 4928f34 90b6e19 a4ef927 009ec65 4928f34 a4ef927 90b6e19 a4ef927 90b6e19 a4ef927 4928f34 a4ef927 616f92a a4ef927 90b6e19 a4ef927 4928f34 a4ef927 4928f34 a4ef927 4928f34 6e4be07 7284d62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
import gradio as gr
import nltk
import os
import pandas as pd
from nltk.tokenize import TreebankWordTokenizer
from sklearn.metrics.pairwise import cosine_similarity
from sentence_transformers import SentenceTransformer
import graphviz
from typing import Tuple, Optional
from visuals.score_card import render_score_card # Updated import
from visuals.layout import (
render_page_header,
render_core_reference,
render_pipeline,
render_pipeline_graph,
render_pipeline_warning,
render_strategy_alignment,
) # Updated import
# Ensure NLTK data is downloaded
try:
nltk.download("punkt", quiet=True)
except Exception as e:
print(f"Error downloading NLTK data: {e}")
# Load SentenceTransformer model
model = SentenceTransformer("all-MiniLM-L6-v2")
def calculate_ttr(text: str) -> float:
"""Calculates Type-Token Ratio (TTR) for lexical diversity."""
if not text:
return 0.0
words = text.split()
unique_words = set(words)
return len(unique_words) / len(words) if words else 0.0
def calculate_similarity(text1: str, text2: str) -> float:
"""Calculates cosine similarity between two texts."""
embeddings = model.encode([text1, text2])
return cosine_similarity([embeddings[0]], [embeddings[1]])[0][0]
def calculate_mad_score(ttr: float, similarity: float) -> float:
"""Calculates the MAD score."""
return 0.3 * (1 - ttr) + 0.7 * similarity
def get_risk_level(mad_score: float) -> str:
"""Determines the risk level based on the MAD score."""
if mad_score > 0.7:
return "High"
elif 0.4 <= mad_score <= 0.7:
return "Medium"
else:
return "Low"
def process_data(file_obj, model_col: str, train_col: str, data_source: str) -> Tuple[
Optional[str],
Optional[bytes],
Optional[str],
Optional[str],
Optional[float],
Optional[float],
Optional[float],
]:
"""Processes the uploaded file and calculates metrics."""
try:
if not file_obj:
return "Error: No file uploaded.", None, None, None, None, None, None
global uploaded_df
df = uploaded_df.get("data")
if df is None:
return "Error: File not yet processed.", None, None, None, None, None, None
if model_col not in df.columns or train_col not in df.columns:
return (
"Error: Selected columns not found in the file.",
None,
None,
None,
None,
None,
None,
)
output_text = " ".join(df[model_col].astype(str))
train_text = " ".join(df[train_col].astype(str))
ttr_output = calculate_ttr(output_text)
ttr_train = calculate_ttr(train_text)
similarity = calculate_similarity(output_text, train_text)
mad_score = calculate_mad_score(ttr_output, similarity)
risk_level = get_risk_level(mad_score)
summary, details, explanation = render_score_card(
ttr_output, ttr_train, similarity, mad_score, risk_level
)
evaluation_markdown = summary + details + explanation
return (
None,
render_pipeline_graph(data_source),
df.head().to_markdown(index=False, numalign="left", stralign="left"),
evaluation_markdown,
ttr_output,
ttr_train,
similarity,
)
except Exception as e:
return f"An error occurred: {str(e)}", None, None, None, None, None, None
# Store uploaded DataFrame globally for later access
uploaded_df = {}
def update_dropdowns(file_obj) -> Tuple[gr.Dropdown, gr.Dropdown, str]:
global uploaded_df
if not file_obj:
uploaded_df["data"] = None # Clear cached file
return (
gr.update(choices=[], value=None),
gr.update(choices=[], value=None),
"No file uploaded.",
)
# Read the file and extract columns
try:
file_name = getattr(file_obj, "name", "")
if file_name.endswith(".csv"):
df = pd.read_csv(file_obj)
elif file_name.endswith(".json"):
df = pd.read_json(file_obj)
else:
return (
gr.update(choices=[], value=None),
gr.update(choices=[], value=None),
"Invalid file type.",
)
uploaded_df["data"] = df
columns = df.columns.tolist()
preview = df.head().to_markdown(index=False, numalign="left", stralign="left")
return (
gr.update(choices=columns, value=None),
gr.update(choices=columns, value=None),
preview,
)
except Exception as e:
return (
gr.update(choices=[], value=None),
gr.update(choices=[], value=None),
f"Error reading file: {e}",
)
def clear_all_fields():
global uploaded_df
uploaded_df.clear() # Clear stored DataFrame
return (
None, # file_input
gr.update(choices=[], value=None), # model_col_input
gr.update(choices=[], value=None), # train_col_input
"", # file_preview
"", # output_markdown
"", # warning_output
None, # ttr_output_metric
None, # ttr_train_metric
None, # similarity_metric
render_pipeline_graph("Synthetic Generated Data"), # pipeline_output default
)
def main_interface():
css = """
.gradio-container {
background: linear-gradient(-45deg, #e0f7fa, #e1f5fe, #f1f8e9, #fff3e0);
background-size: 400% 400%;
animation: oceanWaves 20s ease infinite;
}
@keyframes oceanWaves {
0% { background-position: 0% 50%; }
50% { background-position: 100% 50%; }
100% { background-position: 0% 50%; }
}
"""
with gr.Blocks(css=css, title="MADGuard AI Explorer") as interface:
gr.HTML(render_page_header())
gr.Markdown(
"""
> π§ **MADGuard AI Explorer** helps AI engineers, researchers, and MLOps teams simulate feedback loops in RAG pipelines and detect **Model Autophagy Disorder (MAD)** β where models start learning from their own outputs, leading to degraded performance.
- Compare **real vs. synthetic input effects**
- Visualize the data flow
- Upload your `.csv` or `.json` data
- Get immediate MAD risk diagnostics based on lexical diversity and semantic similarity
"""
)
with gr.Accordion("π Research Reference", open=False):
gr.HTML(render_core_reference())
gr.HTML(
"""
<div style="display: flex; flex-direction: column; align-items: center; margin-bottom: 20px;">
<h3 style="text-align: center;">π½οΈ How to Use MADGuard AI Explorer</h3>
<iframe width="720" height="405"
src="https://www.youtube.com/embed/qjMwvaBXQeY"
title="MADGuard AI Tutorial" frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture"
allowfullscreen></iframe>
</div>
"""
)
gr.Markdown("## 1. Pipeline Simulation")
data_source, description = render_pipeline(default="Synthetic Generated Data")
gr.HTML(description)
pipeline_output = gr.Image(type="filepath", label="Pipeline Graph")
warning_output = gr.HTML()
data_source.change(
fn=render_pipeline_warning, inputs=data_source, outputs=warning_output
)
data_source.change(
fn=render_pipeline_graph, inputs=data_source, outputs=pipeline_output
)
interface.load(
fn=render_pipeline_graph,
inputs=[data_source],
outputs=[pipeline_output],
)
gr.Markdown("## 2. Upload CSV or JSON File")
file_input = gr.File(
file_types=[".csv", ".json"], label="Upload a CSV or JSON file"
)
clear_btn = gr.Button("π§Ή Clear All")
gr.Markdown(
"""
π **Note:**
- **Model Output Column**: Select the column that contains generated responses, completions, or predictions from your model.
- **Training Data Column**: Select the column that may be used for future training or fine-tuning.
This helps MADGuard simulate feedback loops by comparing lexical and semantic overlap between current output and future inputs.
"""
)
with gr.Row():
model_col_input = gr.Dropdown(
choices=[],
value=None,
label="Select column for model output",
interactive=True,
)
train_col_input = gr.Dropdown(
choices=[],
value=None,
label="Select column for future training data",
interactive=True,
)
file_preview = gr.Markdown(label="π File Preview")
output_markdown = gr.Markdown(label="π Evaluation Summary")
with gr.Accordion("π Research-Based Strategy Alignment", open=False):
gr.HTML(render_strategy_alignment())
with gr.Row():
ttr_output_metric = gr.Number(label="Lexical Diversity (Output)")
ttr_train_metric = gr.Number(label="Lexical Diversity (Training Set)")
similarity_metric = gr.Number(label="Semantic Similarity (Cosine)")
def handle_file_upload(file_obj, data_source_val):
dropdowns = update_dropdowns(file_obj)
graph = render_pipeline_graph(data_source_val)
return *dropdowns, graph
file_input.change(
fn=handle_file_upload,
inputs=[file_input, data_source],
outputs=[model_col_input, train_col_input, file_preview, pipeline_output],
)
def process_and_generate(
file_obj, model_col_val: str, train_col_val: str, data_source_val: str
):
error, graph, preview, markdown, ttr_out, ttr_tr, sim = process_data(
file_obj, model_col_val, train_col_val, data_source_val
)
if error:
return error, graph, warning_output, preview, None, None, None, None
return (
"",
graph,
render_pipeline_warning(data_source_val),
preview,
markdown,
ttr_out,
ttr_tr,
sim,
)
inputs = [file_input, model_col_input, train_col_input, data_source]
outputs = [
gr.Markdown(label="β οΈ Error Message"),
pipeline_output,
warning_output,
file_preview,
output_markdown,
ttr_output_metric,
ttr_train_metric,
similarity_metric,
]
clear_btn.click(
fn=clear_all_fields,
inputs=[],
outputs=[
file_input,
model_col_input,
train_col_input,
file_preview,
output_markdown,
warning_output,
ttr_output_metric,
ttr_train_metric,
similarity_metric,
pipeline_output,
],
)
for input_component in inputs:
input_component.change(
fn=process_and_generate, inputs=inputs, outputs=outputs
)
gr.Markdown("---")
gr.Markdown(
"""
**The upcoming Pro version of MADGuard will allow:**
- π Bulk upload support for `.csv` files or folders of `.txt` documents
- π Automated batch scoring with trend visualizations over time
- π§Ύ One-click export of audit-ready diagnostic reports
[**π© Join the waitlist**](https://docs.google.com/forms/d/e/1FAIpQLSfAPPC_Gm7DQElQSWGSnoB6T5hMxb_rXSu48OC8E6TNGZuKgQ/viewform?usp=sharing&ouid=118007615320536574300)
"""
)
return interface
# Launch the Gradio interface
if __name__ == "__main__":
interface = main_interface()
interface.launch(server_name="0.0.0.0", server_port=7860)
|