File size: 9,260 Bytes
6e4be07 a4ef927 a50a59e a4ef927 6e4be07 a4ef927 6e4be07 a4ef927 616f92a a4ef927 616f92a a4ef927 616f92a a4ef927 616f92a a4ef927 6e4be07 7284d62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
import gradio as gr
import nltk
import os
import pandas as pd
from nltk.tokenize import TreebankWordTokenizer
from sklearn.metrics.pairwise import cosine_similarity
from sentence_transformers import SentenceTransformer
import graphviz
from typing import Tuple, Optional
from visuals.score_card import render_score_card # Updated import
from visuals.layout import (
render_page_header,
render_core_reference,
render_pipeline,
render_pipeline_graph,
render_pipeline_warning,
render_strategy_alignment,
) # Updated import
# Ensure NLTK data is downloaded
try:
nltk.download("punkt", quiet=True)
except Exception as e:
print(f"Error downloading NLTK data: {e}")
# Load SentenceTransformer model
model = SentenceTransformer("all-MiniLM-L6-v2")
def calculate_ttr(text: str) -> float:
"""Calculates Type-Token Ratio (TTR) for lexical diversity."""
if not text:
return 0.0
words = text.split()
unique_words = set(words)
return len(unique_words) / len(words) if words else 0.0
def calculate_similarity(text1: str, text2: str) -> float:
"""Calculates cosine similarity between two texts."""
embeddings = model.encode([text1, text2])
return cosine_similarity([embeddings[0]], [embeddings[1]])[0][0]
def calculate_mad_score(ttr: float, similarity: float) -> float:
"""Calculates the MAD score."""
return 0.3 * (1 - ttr) + 0.7 * similarity
def get_risk_level(mad_score: float) -> str:
"""Determines the risk level based on the MAD score."""
if mad_score > 0.7:
return "High"
elif 0.4 <= mad_score <= 0.7:
return "Medium"
else:
return "Low"
def process_data(file_obj, model_col: str, train_col: str, data_source: str) -> Tuple[
Optional[str],
Optional[bytes],
Optional[str],
Optional[str],
Optional[float],
Optional[float],
Optional[float],
]:
"""Processes the uploaded file and calculates metrics."""
try:
if not file_obj:
return "Error: No file uploaded.", None, None, None, None, None, None
file_path = file_obj.name
if file_path.endswith(".csv"):
df = pd.read_csv(file_path)
elif file_path.endswith(".json"):
df = pd.read_json(file_path)
else:
return (
"Error: Invalid file type. Please upload a CSV or JSON file.",
None,
None,
None,
None,
None,
None,
)
if model_col not in df.columns or train_col not in df.columns:
return (
"Error: Selected columns not found in the file.",
None,
None,
None,
None,
None,
None,
)
output_text = " ".join(df[model_col].astype(str))
train_text = " ".join(df[train_col].astype(str))
ttr_output = calculate_ttr(output_text)
ttr_train = calculate_ttr(train_text)
similarity = calculate_similarity(output_text, train_text)
mad_score = calculate_mad_score(ttr_output, similarity)
risk_level = get_risk_level(mad_score)
summary, details, explanation = render_score_card(
ttr_output, ttr_train, similarity, mad_score, risk_level
)
evaluation_markdown = summary + details + explanation
return (
None, # No error
render_pipeline_graph(data_source),
df.head().to_markdown(index=False, numalign="left", stralign="left"),
evaluation_markdown,
ttr_output,
ttr_train,
similarity,
)
except Exception as e:
return f"An error occurred: {str(e)}", None, None, None, None, None, None
def update_dropdowns(file_obj) -> Tuple[list, str]:
"""Updates dropdown choices based on the uploaded file."""
if not file_obj:
return [], "No file uploaded."
file_path = file_obj.name
try:
if file_path.endswith(".csv"):
df = pd.read_csv(file_path)
elif file_path.endswith(".json"):
df = pd.read_json(file_path)
else:
return [], "Invalid file type."
columns = df.columns.tolist()
preview = df.head().to_markdown(index=False, numalign="left", stralign="left")
return columns, preview
except Exception as e:
return [], f"Error reading file: {e}"
def main_interface():
css = """
.gradio-container {
background: linear-gradient(-45deg, #e0f7fa, #e1f5fe, #f1f8e9, #fff3e0);
background-size: 400% 400%;
animation: oceanWaves 20s ease infinite;
}
@keyframes oceanWaves {
0% { background-position: 0% 50%; }
50% { background-position: 100% 50%; }
100% { background-position: 0% 50%; }
}
"""
with gr.Blocks(css=css, title="MADGuard AI Explorer") as interface:
gr.HTML(render_page_header())
gr.Markdown(
"""
> π§ **MADGuard AI Explorer** helps AI engineers, researchers, and MLOps teams simulate feedback loops in RAG pipelines and detect **Model Autophagy Disorder (MAD)** β where models start learning from their own outputs, leading to degraded performance.
- Compare **real vs. synthetic input effects**
- Visualize the data flow
- Upload your `.csv` or `.json` data
- Get immediate MAD risk diagnostics based on lexical diversity and semantic similarity
"""
)
with gr.Accordion("π Research Reference", open=False):
gr.HTML(render_core_reference())
gr.Markdown("## 1. Pipeline Simulation")
data_source, description = render_pipeline()
gr.HTML(description)
pipeline_output = gr.Image(type="filepath", label="Pipeline Graph")
warning_output = gr.HTML()
data_source.change(
fn=render_pipeline_warning, inputs=data_source, outputs=warning_output
)
data_source.change(
fn=render_pipeline_graph, inputs=data_source, outputs=pipeline_output
)
gr.Markdown("## 2. Upload CSV or JSON File")
file_input = gr.File(
file_types=[".csv", ".json"], label="Upload a CSV or JSON file"
)
with gr.Row():
model_col_input = gr.Dropdown(
choices=[], label="Select column for model output"
)
train_col_input = gr.Dropdown(
choices=[], label="Select column for future training data"
)
file_preview = gr.Markdown(label="π File Preview")
output_markdown = gr.Markdown(label="π Evaluation Summary")
with gr.Accordion("π Research-Based Strategy Alignment", open=False):
gr.HTML(render_strategy_alignment())
with gr.Row():
ttr_output_metric = gr.Number(label="Lexical Diversity (Output)")
ttr_train_metric = gr.Number(label="Lexical Diversity (Training Set)")
similarity_metric = gr.Number(label="Semantic Similarity (Cosine)")
file_input.change(
update_dropdowns,
inputs=file_input,
outputs=[model_col_input, train_col_input, file_preview],
)
def process_and_generate(
file_obj, model_col_val: str, train_col_val: str, data_source_val: str
):
error, graph, preview, markdown, ttr_out, ttr_tr, sim = process_data(
file_obj, model_col_val, train_col_val, data_source_val
)
if error:
return error, graph, warning_output, preview, None, None, None, None
return (
"",
graph,
render_pipeline_warning(data_source_val),
preview,
markdown,
ttr_out,
ttr_tr,
sim,
)
inputs = [file_input, model_col_input, train_col_input, data_source]
outputs = [
gr.Markdown(label="β οΈ Error Message"),
pipeline_output,
warning_output,
file_preview,
output_markdown,
ttr_output_metric,
ttr_train_metric,
similarity_metric,
]
for input_component in inputs:
input_component.change(
fn=process_and_generate, inputs=inputs, outputs=outputs
)
gr.Markdown("---")
gr.Markdown(
"""
**The upcoming Pro version of MADGuard will allow:**
- π Bulk upload support for `.csv` files or folders of `.txt` documents
- π Automated batch scoring with trend visualizations over time
- π§Ύ One-click export of audit-ready diagnostic reports
[**π© Join the waitlist**](https://docs.google.com/forms/d/e/1FAIpQLSfAPPC_Gm7DQElQSWGSnoB6T5hMxb_rXSu48OC8E6TNGZuKgQ/viewform?usp=sharing&ouid=118007615320536574300)
"""
)
return interface
# Launch the Gradio interface
if __name__ == "__main__":
interface = main_interface()
interface.launch(server_name="0.0.0.0", server_port=7860)
|