import time import cv2 import numpy as np import onnxruntime try: from demo.object_detection.utils import draw_detections except (ImportError, ModuleNotFoundError): from utils import draw_detections class YOLOv10: def __init__(self, path): self.initialize_model(path) def __call__(self, image): return self.detect_objects(image) def initialize_model(self, path): self.session = onnxruntime.InferenceSession(path, providers=['CPUExecutionProvider']) self.get_input_details() self.get_output_details() def detect_objects(self, image, conf_threshold=0.3): input_tensor = self.prepare_input(image) return self.inference(image, input_tensor, conf_threshold) def prepare_input(self, image): self.img_height, self.img_width = image.shape[:2] input_img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) input_img = cv2.resize(input_img, (self.input_width, self.input_height)) input_img = input_img / 255.0 input_img = input_img.transpose(2, 0, 1) input_tensor = input_img[np.newaxis, :, :, :].astype(np.float32) return input_tensor def inference(self, image, input_tensor, conf_threshold=0.3): start = time.perf_counter() outputs = self.session.run(self.output_names, {self.input_names[0]: input_tensor}) print(f"Inference time: {(time.perf_counter() - start) * 1000:.2f} ms") boxes, scores, class_ids = self.process_output(outputs, conf_threshold) return self.draw_detections(image, boxes, scores, class_ids) def process_output(self, output, conf_threshold=0.3): predictions = np.squeeze(output[0]) scores = predictions[:, 4] predictions = predictions[scores > conf_threshold, :] scores = scores[scores > conf_threshold] if len(scores) == 0: return [], [], [] class_ids = predictions[:, 5].astype(int) boxes = self.extract_boxes(predictions) return boxes, scores, class_ids def extract_boxes(self, predictions): boxes = predictions[:, :4] boxes = self.rescale_boxes(boxes) return boxes def rescale_boxes(self, boxes): input_shape = np.array([self.input_width, self.input_height, self.input_width, self.input_height]) boxes = np.divide(boxes, input_shape, dtype=np.float32) boxes *= np.array([self.img_width, self.img_height, self.img_width, self.img_height]) return boxes def draw_detections(self, image, boxes, scores, class_ids, draw_scores=True, mask_alpha=0.4): return draw_detections(image, boxes, scores, class_ids, mask_alpha) def get_input_details(self): model_inputs = self.session.get_inputs() self.input_names = [model_inputs[i].name for i in range(len(model_inputs))] self.input_shape = model_inputs[0].shape self.input_height = self.input_shape[2] self.input_width = self.input_shape[3] def get_output_details(self): model_outputs = self.session.get_outputs() self.output_names = [model_outputs[i].name for i in range(len(model_outputs))]