Create generator.py
Browse files- generator.py +54 -0
generator.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
LATENT_DIM = 500
|
2 |
+
EPSILON = 1e-8
|
3 |
+
|
4 |
+
class Generator(nn.Module):
|
5 |
+
@nn.compact
|
6 |
+
def __call__(self, latent, training=True):
|
7 |
+
x = nn.Dense(features=64)(latent)
|
8 |
+
# x = nn.BatchNorm(not training)(x)
|
9 |
+
x = nn.relu(x)
|
10 |
+
x = nn.Dense(features=2*2*1024)(x)
|
11 |
+
x = nn.BatchNorm(not training)(x)
|
12 |
+
x = nn.relu(x)
|
13 |
+
x = nn.Dropout(0.25, deterministic=not training)(x)
|
14 |
+
x = x.reshape((x.shape[0], 2, 2, -1))
|
15 |
+
x4 = nn.ConvTranspose(features=512, kernel_size=(3, 3), strides=(2, 2))(x)
|
16 |
+
x4 = LocalResponseNorm()(x4)
|
17 |
+
x4 = nn.relu(x4)
|
18 |
+
x4o = nn.ConvTranspose(features=3, kernel_size=(3, 3))(x4)
|
19 |
+
x4 = nn.ConvTranspose(features=512, kernel_size=(3, 3))(x4)
|
20 |
+
x4 = LocalResponseNorm()(x4)
|
21 |
+
x4 = nn.relu(x4)
|
22 |
+
x8 = nn.ConvTranspose(features=256, kernel_size=(3, 3), strides=(2, 2))(x4)
|
23 |
+
x8 = LocalResponseNorm()(x8)
|
24 |
+
x8 = nn.relu(x8)
|
25 |
+
x8o = nn.ConvTranspose(features=3, kernel_size=(3, 3))(x8)
|
26 |
+
x8 = nn.ConvTranspose(features=256, kernel_size=(3, 3))(x8)
|
27 |
+
x8 = LocalResponseNorm()(x8)
|
28 |
+
x8 = nn.relu(x8)
|
29 |
+
x16 = nn.ConvTranspose(features=128, kernel_size=(3, 3), strides=(2, 2))(x8)
|
30 |
+
x16 = LocalResponseNorm()(x16)
|
31 |
+
x16 = nn.relu(x16)
|
32 |
+
x16o = nn.ConvTranspose(features=3, kernel_size=(3, 3))(x16)
|
33 |
+
x16 = nn.ConvTranspose(features=128, kernel_size=(3, 3))(x16)
|
34 |
+
x16 = LocalResponseNorm()(x16)
|
35 |
+
x16 = nn.relu(x16)
|
36 |
+
x32 = nn.ConvTranspose(features=64, kernel_size=(3, 3), strides=(2, 2))(x16)
|
37 |
+
x32 = LocalResponseNorm()(x32)
|
38 |
+
x32 = nn.relu(x32)
|
39 |
+
x32o = nn.ConvTranspose(features=3, kernel_size=(3, 3))(x32)
|
40 |
+
x32 = nn.ConvTranspose(features=64, kernel_size=(3, 3))(x32)
|
41 |
+
x32 = LocalResponseNorm()(x32)
|
42 |
+
x32 = nn.relu(x32)
|
43 |
+
x64 = nn.ConvTranspose(features=32, kernel_size=(3, 3), strides=(2, 2))(x32)
|
44 |
+
x64 = LocalResponseNorm()(x64)
|
45 |
+
x64 = nn.relu(x64)
|
46 |
+
x64o = nn.ConvTranspose(features=3, kernel_size=(3, 3))(x64)
|
47 |
+
x64 = nn.ConvTranspose(features=32, kernel_size=(3, 3))(x64)
|
48 |
+
x64 = LocalResponseNorm()(x64)
|
49 |
+
x64 = nn.relu(x64)
|
50 |
+
x128 = nn.ConvTranspose(features=64, kernel_size=(3, 3), strides=(2, 2))(x64)
|
51 |
+
x128 = LocalResponseNorm()(x128)
|
52 |
+
x128 = nn.relu(x128)
|
53 |
+
x128o = nn.ConvTranspose(features=3, kernel_size=(3, 3))(x128)
|
54 |
+
return (nn.tanh(x128o), nn.tanh(x64o), nn.tanh(x32o), nn.tanh(x16o), nn.tanh(x8o), nn.tanh(x4o))
|