import streamlit as st from PIL import Image import jax import jax.numpy as jnp # JAX NumPy import numpy as np from flax import linen as nn # Linen API from huggingface_hub import HfFileSystem from flax.serialization import msgpack_restore, from_state_dict import time from local_response_norm import LocalResponseNorm LATENT_DIM = 100 class Generator(nn.Module): @nn.compact def __call__(self, latent, training=True): x = nn.Dense(features=32)(latent) # x = nn.BatchNorm(not training)(x) x = nn.relu(x) x = nn.Dense(features=2*2*256)(x) x = nn.BatchNorm(not training)(x) x = nn.relu(x) x = nn.Dropout(0.5, deterministic=not training)(x) x = x.reshape((x.shape[0], 2, 2, -1)) x4o = nn.ConvTranspose(features=3, kernel_size=(2, 2), strides=(2, 2))(x) x4 = nn.ConvTranspose(features=128, kernel_size=(2, 2), strides=(2, 2))(x) x4 = LocalResponseNorm()(x4) # x4 = nn.BatchNorm(not training)(x4) x8 = nn.relu(x4) # x8 = nn.Dropout(0.5, deterministic=not training)(x8) x8o = nn.ConvTranspose(features=3, kernel_size=(2, 2), strides=(2, 2))(x8) x8 = nn.ConvTranspose(features=64, kernel_size=(2, 2), strides=(2, 2))(x8) x8 = LocalResponseNorm()(x8) # x8 = nn.BatchNorm(not training)(x8) x16 = nn.relu(x8) # x16 = nn.Dropout(0.5, deterministic=not training)(x16) x16o = nn.ConvTranspose(features=3, kernel_size=(2, 2), strides=(2, 2))(x16) x16 = nn.ConvTranspose(features=32, kernel_size=(2, 2), strides=(2, 2))(x16) x16 = LocalResponseNorm()(x16) # x16 = nn.BatchNorm(not training)(x16) x32 = nn.relu(x16) # x32 = nn.Dropout(0.5, deterministic=not training)(x32) x32o = nn.ConvTranspose(features=3, kernel_size=(2, 2), strides=(2, 2))(x32) return (nn.tanh(x32o), nn.tanh(x16o), nn.tanh(x8o), nn.tanh(x4o)) generator = Generator() variables = generator.init(jax.random.PRNGKey(0), jnp.zeros([1, LATENT_DIM]), training=False) fs = HfFileSystem() with fs.open("PrakhAI/AIPlane/g_checkpoint.msgpack", "rb") as f: g_state = from_state_dict(variables, msgpack_restore(f.read())) def sample_latent(key): return jax.random.normal(key, shape=(1, LATENT_DIM)) if st.button('Generate Plane'): latents = sample_latent(jax.random.PRNGKey(int(1_000_000 * time.time()))) (g_out32, g_out16, g_out8, g_out4) = generator.apply({'params': g_state['params'], 'batch_stats': g_state['batch_stats']}, latents, training=False) img = ((np.array(g_out32[0])+1)*255./2.).astype(np.uint8) st.image(Image.fromarray(img)) st.write("The model and its details are at https://huggingface.co/PrakhAI/AIPlane")