Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,24 +1,25 @@
|
|
|
|
1 |
import streamlit as st
|
2 |
from dotenv import load_dotenv
|
3 |
from PyPDF2 import PdfReader
|
4 |
from langchain.text_splitter import CharacterTextSplitter
|
5 |
-
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
|
6 |
from langchain.vectorstores import FAISS
|
7 |
-
from langchain.chat_models import ChatOpenAI
|
8 |
from langchain.memory import ConversationBufferMemory
|
9 |
from langchain.chains import ConversationalRetrievalChain
|
10 |
-
from htmlTemplates import css, bot_template, user_template
|
11 |
from langchain.llms import HuggingFaceHub
|
|
|
12 |
|
13 |
def get_pdf_text(pdf_docs):
|
14 |
text = ""
|
15 |
for pdf in pdf_docs:
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
19 |
return text
|
20 |
|
21 |
-
|
22 |
def get_text_chunks(text):
|
23 |
text_splitter = CharacterTextSplitter(
|
24 |
separator="\n",
|
@@ -29,17 +30,23 @@ def get_text_chunks(text):
|
|
29 |
chunks = text_splitter.split_text(text)
|
30 |
return chunks
|
31 |
|
32 |
-
|
33 |
def get_vectorstore(text_chunks):
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
39 |
|
40 |
def get_conversation_chain(vectorstore):
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
memory = ConversationBufferMemory(
|
45 |
memory_key='chat_history', return_messages=True)
|
@@ -50,25 +57,13 @@ def get_conversation_chain(vectorstore):
|
|
50 |
)
|
51 |
return conversation_chain
|
52 |
|
53 |
-
|
54 |
def handle_userinput(user_question):
|
55 |
response = st.session_state.conversation({'question': user_question})
|
56 |
st.session_state.chat_history = response['chat_history']
|
57 |
|
58 |
-
for i, message in enumerate(st.session_state.chat_history):
|
59 |
-
if i % 2 == 0:
|
60 |
-
st.write(user_template.replace(
|
61 |
-
"{{MSG}}", message.content), unsafe_allow_html=True)
|
62 |
-
else:
|
63 |
-
st.write(bot_template.replace(
|
64 |
-
"{{MSG}}", message.content), unsafe_allow_html=True)
|
65 |
-
|
66 |
-
|
67 |
def main():
|
68 |
load_dotenv()
|
69 |
-
st.set_page_config(page_title="Chat with multiple PDFs",
|
70 |
-
page_icon=":books:")
|
71 |
-
st.write(css, unsafe_allow_html=True)
|
72 |
|
73 |
if "conversation" not in st.session_state:
|
74 |
st.session_state.conversation = None
|
@@ -89,16 +84,16 @@ def main():
|
|
89 |
# get pdf text
|
90 |
raw_text = get_pdf_text(pdf_docs)
|
91 |
|
92 |
-
#
|
93 |
-
|
94 |
-
|
95 |
-
# create vector store
|
96 |
-
vectorstore = get_vectorstore(text_chunks)
|
97 |
|
98 |
-
|
99 |
-
|
100 |
-
vectorstore)
|
101 |
|
|
|
|
|
|
|
102 |
|
103 |
if __name__ == '__main__':
|
104 |
-
main()
|
|
|
1 |
+
import os
|
2 |
import streamlit as st
|
3 |
from dotenv import load_dotenv
|
4 |
from PyPDF2 import PdfReader
|
5 |
from langchain.text_splitter import CharacterTextSplitter
|
|
|
6 |
from langchain.vectorstores import FAISS
|
|
|
7 |
from langchain.memory import ConversationBufferMemory
|
8 |
from langchain.chains import ConversationalRetrievalChain
|
|
|
9 |
from langchain.llms import HuggingFaceHub
|
10 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
11 |
|
12 |
def get_pdf_text(pdf_docs):
|
13 |
text = ""
|
14 |
for pdf in pdf_docs:
|
15 |
+
try:
|
16 |
+
pdf_reader = PdfReader(pdf)
|
17 |
+
for page in pdf_reader.pages:
|
18 |
+
text += page.extract_text()
|
19 |
+
except Exception as e:
|
20 |
+
st.error(f"Error reading {pdf.name}: {e}. Skipping this file.")
|
21 |
return text
|
22 |
|
|
|
23 |
def get_text_chunks(text):
|
24 |
text_splitter = CharacterTextSplitter(
|
25 |
separator="\n",
|
|
|
30 |
chunks = text_splitter.split_text(text)
|
31 |
return chunks
|
32 |
|
|
|
33 |
def get_vectorstore(text_chunks):
|
34 |
+
try:
|
35 |
+
embedding = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
36 |
+
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embedding)
|
37 |
+
return vectorstore
|
38 |
+
except Exception as e:
|
39 |
+
st.error(f"Error creating vector store: {e}")
|
40 |
+
return None
|
41 |
|
42 |
def get_conversation_chain(vectorstore):
|
43 |
+
# Fetch the HuggingFace API token from environment variable
|
44 |
+
api_token = os.getenv("HUGGINGFACE_API_TOKEN ")
|
45 |
+
if not api_token:
|
46 |
+
st.error("HuggingFace API token not found. Please ensure it is set in the environment variables.")
|
47 |
+
return None
|
48 |
+
|
49 |
+
llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature": 0.5, "max_length": 512}, huggingfacehub_api_token=api_token)
|
50 |
|
51 |
memory = ConversationBufferMemory(
|
52 |
memory_key='chat_history', return_messages=True)
|
|
|
57 |
)
|
58 |
return conversation_chain
|
59 |
|
|
|
60 |
def handle_userinput(user_question):
|
61 |
response = st.session_state.conversation({'question': user_question})
|
62 |
st.session_state.chat_history = response['chat_history']
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
def main():
|
65 |
load_dotenv()
|
66 |
+
st.set_page_config(page_title="Chat with multiple PDFs", page_icon=":books:")
|
|
|
|
|
67 |
|
68 |
if "conversation" not in st.session_state:
|
69 |
st.session_state.conversation = None
|
|
|
84 |
# get pdf text
|
85 |
raw_text = get_pdf_text(pdf_docs)
|
86 |
|
87 |
+
if raw_text: # Proceed only if there is valid text
|
88 |
+
# get the text chunks
|
89 |
+
text_chunks = get_text_chunks(raw_text)
|
|
|
|
|
90 |
|
91 |
+
# create vector store
|
92 |
+
vectorstore = get_vectorstore(text_chunks)
|
|
|
93 |
|
94 |
+
if vectorstore: # Check if vectorstore is valid
|
95 |
+
# create conversation chain
|
96 |
+
st.session_state.conversation = get_conversation_chain(vectorstore)
|
97 |
|
98 |
if __name__ == '__main__':
|
99 |
+
main()
|