Spaces:
Sleeping
Sleeping
Delete app.py
Browse files
app.py
DELETED
@@ -1,99 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import streamlit as st
|
3 |
-
from dotenv import load_dotenv
|
4 |
-
from PyPDF2 import PdfReader
|
5 |
-
from langchain.text_splitter import CharacterTextSplitter
|
6 |
-
from langchain_community.vectorstores import FAISS
|
7 |
-
from langchain.memory import ConversationBufferMemory
|
8 |
-
from langchain.chains import ConversationalRetrievalChain
|
9 |
-
from langchain.llms import HuggingFaceHub
|
10 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
11 |
-
|
12 |
-
def get_pdf_text(pdf_docs):
|
13 |
-
text = ""
|
14 |
-
for pdf in pdf_docs:
|
15 |
-
try:
|
16 |
-
pdf_reader = PdfReader(pdf)
|
17 |
-
for page in pdf_reader.pages:
|
18 |
-
text += page.extract_text()
|
19 |
-
except Exception as e:
|
20 |
-
st.error(f"Error reading {pdf.name}: {e}. Skipping this file.")
|
21 |
-
return text
|
22 |
-
|
23 |
-
def get_text_chunks(text):
|
24 |
-
text_splitter = CharacterTextSplitter(
|
25 |
-
separator="\n",
|
26 |
-
chunk_size=1000,
|
27 |
-
chunk_overlap=200,
|
28 |
-
length_function=len
|
29 |
-
)
|
30 |
-
chunks = text_splitter.split_text(text)
|
31 |
-
return chunks
|
32 |
-
|
33 |
-
def get_vectorstore(text_chunks):
|
34 |
-
try:
|
35 |
-
embedding = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
36 |
-
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embedding)
|
37 |
-
return vectorstore
|
38 |
-
except Exception as e:
|
39 |
-
st.error(f"Error creating vector store: {e}")
|
40 |
-
return None
|
41 |
-
|
42 |
-
def get_conversation_chain(vectorstore):
|
43 |
-
# Fetch the HuggingFace API token from environment variable
|
44 |
-
api_token = os.getenv("HUGGINGFACE_API_TOKEN")
|
45 |
-
if not api_token:
|
46 |
-
st.error("HuggingFace API token not found. Please ensure it is set in the environment variables.")
|
47 |
-
return None
|
48 |
-
|
49 |
-
llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature": 0.5, "max_length": 512}, huggingfacehub_api_token=api_token)
|
50 |
-
|
51 |
-
memory = ConversationBufferMemory(
|
52 |
-
memory_key='chat_history', return_messages=True)
|
53 |
-
conversation_chain = ConversationalRetrievalChain.from_llm(
|
54 |
-
llm=llm,
|
55 |
-
retriever=vectorstore.as_retriever(),
|
56 |
-
memory=memory
|
57 |
-
)
|
58 |
-
return conversation_chain
|
59 |
-
|
60 |
-
def handle_userinput(user_question):
|
61 |
-
response = st.session_state.conversation({'question': user_question})
|
62 |
-
st.session_state.chat_history = response['chat_history']
|
63 |
-
|
64 |
-
def main():
|
65 |
-
load_dotenv()
|
66 |
-
st.set_page_config(page_title="Chat with multiple PDFs", page_icon=":books:")
|
67 |
-
|
68 |
-
if "conversation" not in st.session_state:
|
69 |
-
st.session_state.conversation = None
|
70 |
-
if "chat_history" not in st.session_state:
|
71 |
-
st.session_state.chat_history = None
|
72 |
-
|
73 |
-
st.header("Chat with multiple PDFs :books:")
|
74 |
-
user_question = st.text_input("Ask a question about your documents:")
|
75 |
-
if user_question:
|
76 |
-
handle_userinput(user_question)
|
77 |
-
|
78 |
-
with st.sidebar:
|
79 |
-
st.subheader("Your documents")
|
80 |
-
pdf_docs = st.file_uploader(
|
81 |
-
"Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
|
82 |
-
if st.button("Process"):
|
83 |
-
with st.spinner("Processing"):
|
84 |
-
# get pdf text
|
85 |
-
raw_text = get_pdf_text(pdf_docs)
|
86 |
-
|
87 |
-
if raw_text: # Proceed only if there is valid text
|
88 |
-
# get the text chunks
|
89 |
-
text_chunks = get_text_chunks(raw_text)
|
90 |
-
|
91 |
-
# create vector store
|
92 |
-
vectorstore = get_vectorstore(text_chunks)
|
93 |
-
|
94 |
-
if vectorstore: # Check if vectorstore is valid
|
95 |
-
# create conversation chain
|
96 |
-
st.session_state.conversation = get_conversation_chain(vectorstore)
|
97 |
-
|
98 |
-
if __name__ == '__main__':
|
99 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|