Pouyae commited on
Commit
be3d96d
Β·
1 Parent(s): 13efb82
Files changed (4) hide show
  1. README.md +0 -2
  2. index.html +152 -18
  3. style.css +0 -28
  4. styles.css +36 -0
README.md CHANGED
@@ -8,5 +8,3 @@ pinned: false
8
  license: mit
9
  short_description: Top Open-Source Small Language Models for Generative AI Appl
10
  ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
8
  license: mit
9
  short_description: Top Open-Source Small Language Models for Generative AI Appl
10
  ---
 
 
index.html CHANGED
@@ -1,19 +1,153 @@
1
- <!doctype html>
2
- <html>
3
- <head>
4
- <meta charset="utf-8" />
5
- <meta name="viewport" content="width=device-width" />
6
- <title>My static Space</title>
7
- <link rel="stylesheet" href="style.css" />
8
- </head>
9
- <body>
10
- <div class="card">
11
- <h1>Welcome to your static Space!</h1>
12
- <p>You can modify this app directly by editing <i>index.html</i> in the Files and versions tab.</p>
13
- <p>
14
- Also don't forget to check the
15
- <a href="https://huggingface.co/docs/hub/spaces" target="_blank">Spaces documentation</a>.
16
- </p>
17
- </div>
18
- </body>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  </html>
 
1
+ <!DOCTYPE html>
2
+ <html lang="en">
3
+ <head>
4
+ <meta charset="UTF-8">
5
+ <meta name="viewport" content="width=device-width, initial-scale=1">
6
+ <title>Top Open-Source Small Language Models</title>
7
+ <link rel="stylesheet" href="styles.css"/>
8
+ </head>
9
+ <body>
10
+
11
+ <h1>Top Open-Source Small Language Models for Generative AI Applications</h1>
12
+
13
+ <p>
14
+ Small Language Models (SLMs) are language models that contain, at most, a few billion parametersβ€”significantly fewer
15
+ than Large Language Models (LLMs), which can have tens, hundreds of billions, or even trillions, of parameters. SLMs
16
+ are well-suited for resource-constrained environments, as well as on-device and real-time generative AI
17
+ applications. Many of them can run locally on a laptop using tools like LM Studio or Ollama . These models are
18
+ typically derived from larger models using techniques such as quantization and distillation. In the following, some
19
+ well developed SLMs are introduced.
20
+ </p>
21
+ <p>
22
+ Note: All the models mentioned here are open source. However, for details regarding experimental use, commercial
23
+ use, redistribution, and other terms, please refer to the license documentation.
24
+ </p>
25
+
26
+ <h2>Phi 4 Collection by Microsoft</h2>
27
+ <p>
28
+ This Collection features a range of small language models, including reasoning models, ONNX- and GGUF-compatible
29
+ formats, and multimodal models. The base model in the collection has 14 billion parameters, while the smallest
30
+ models have 3.84 billion. Strategic use of synthetic data during training has led to improved performance compared
31
+ to its mother model (primarily GPT-4). Currently, the collection includes three versions of reasoning-focused SLMs,
32
+ making it one of the best solutions for reasoning tasks.
33
+ </p>
34
+ <p>
35
+ πŸ‘‰ Licence: <a href="https://choosealicense.com/licenses/mit/" target="_blank">MIT</a><br>
36
+ πŸ‘‰ <a href="https://huggingface.co/collections/microsoft/phi-4-677e9380e514feb5577a40e4" target="_blank">Collection
37
+ on Hugging Face</a><br>
38
+ πŸ‘‰ <a href="https://arxiv.org/abs/2412.08905" target="_blank">Technical Report</a>
39
+ </p>
40
+
41
+ <h2>Gemma 3 Collection by Google</h2>
42
+ <p>
43
+ This collection features multiple versions, including Image-to-Text, Text-to-Text, and Image-and-Text-to-Text
44
+ models, available in both quantized and GGUF formats. The models vary in size, with 1, 4.3, 12.2, and 27.4 billion
45
+ parameters. Two specialized variants have been developed for specific applications: TxGemma, optimized for
46
+ therapeutic development, and ShieldGemma, designed for moderating text and image content.
47
+ </p>
48
+ <p>
49
+ πŸ‘‰ Licence: <a href="https://ai.google.dev/gemma/terms" target="_blank">Gemma</a><br>
50
+ πŸ‘‰ <a href="https://huggingface.co/collections/google/gemma-3-release-67c6c6f89c4f76621268bb6d" target="_blank">Collection
51
+ on Hugging Face</a><br>
52
+ πŸ‘‰ <a href="https://storage.googleapis.com/deepmind-media/gemma/Gemma3Report.pdf" target="_blank">Technical
53
+ Report</a><br>
54
+ πŸ‘‰ <a href="https://huggingface.co/collections/google/shieldgemma-67d130ef8da6af884072a789" target="_blank">ShieldGemma
55
+ on Hugging Face</a><br>
56
+ πŸ‘‰ <a href="https://huggingface.co/collections/google/txgemma-release-67dd92e931c857d15e4d1e87" target="_blank">TxGemma
57
+ on Hugging Face</a>
58
+ </p>
59
+
60
+ <h2>Mistral Models</h2>
61
+ <p>
62
+ Mistral AI is a France-based AI startup and one of the pioneers in releasing open-source language models. Its
63
+ current product lineup includes three compact models: Mistral Small 3.1, Pixtral 12B, and Mistral NEMO. All of them
64
+ are released under <a href="https://www.apache.org/licenses/LICENSE-2.0" target="_blank">Apache 2.0 license</a>.
65
+ </p>
66
+
67
+ <p>
68
+ <b>Mistral 3.1</b> is a multimodal and multilingual SLM having 24 billion parameters and 128K context window.
69
+ Currently there are two versions: Base and Instruct.<br>
70
+ πŸ‘‰ <a href="https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Base-2503" target="_blank">Base Version on Hugging
71
+ Face</a><br>
72
+ πŸ‘‰ <a href="https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Instruct-2503" target="_blank">Instruct Version on
73
+ Hugging Face</a><br>
74
+ πŸ‘‰ <a href="https://mistral.ai/news/mistral-small-3-1" target="_blank">Technical Report</a><br>
75
+ </p>
76
+
77
+ <p>
78
+ <b>Pixtral 12B</b> is a natively multimodal model trained on interleaved image and text data, delivering strong
79
+ performance on multimodal tasks and instruction following while maintaining state-of-the-art results on text-only
80
+ benchmarks. It features a newly developed 400M parameter vision encoder and a 12B parameter multimodal decoder based
81
+ on Mistral NEMO. The model supports variable image sizes, aspect ratios, and multiple images within a long context
82
+ window of up to 128k tokens.<br>
83
+ πŸ‘‰ <a href="https://huggingface.co/mistralai/Pixtral-12B-Base-2409" target="_blank">Pixtral-12B-Base-2409 on Hugging
84
+ Face</a><br>
85
+ πŸ‘‰ <a href="https://huggingface.co/mistralai/Pixtral-12B-2409" target="_blank">Pixtral-12B-2409 on Hugging
86
+ Face</a><br>
87
+ πŸ‘‰ <a href="https://mistral.ai/news/pixtral-12b" target="_blank">Technical Report</a><br>
88
+ </p>
89
+
90
+ <p>
91
+ <b>Mistral NeMo</b> is a 12B model developed in collaboration with NVIDIA, featuring a large 128k-token context
92
+ window and state-of-the-art reasoning, knowledge, and coding accuracy for its size.<br>
93
+ πŸ‘‰ <a href="https://huggingface.co/mistralai/Mistral-Nemo-Instruct-FP8-2407" target="_blank">Model on Hugging
94
+ Face</a><br>
95
+ πŸ‘‰ <a href="https://mistral.ai/news/mistral-nemo" target="_blank">Technical Report</a>
96
+ </p>
97
+
98
+ <h2>Llama Models by Meta</h2>
99
+ <p>
100
+ Meta is one of the leading contributors to open-source AI. In recent years, it has released several versions of its
101
+ Llama models. The latest series is Llama 4, although all models in this collection are currently quite large.
102
+ Smaller models may be introduced in the future or in upcoming sub-versions of Llama 4, but for now, that hasn’t
103
+ happened. The most recent collection that includes smaller models is Llama 3.2. It features models with 1.24 billion
104
+ and 3.21 billion parameters with 128k context windows. Additionally, there is a 10.6 billion-parameter multimodal
105
+ version designed for Image-and-Text-to-Text tasks.
106
+ This collection includes small variants of Llama Guard β€” fine-tuned language models designed for prompt and response
107
+ classification. They can detect unsafe prompts and responses, making them useful for implementing safety measures in
108
+ LLM-based applications.
109
+ </p>
110
+ <p>
111
+ πŸ‘‰ License: <a href="https://www.llama.com/llama3_2/license/" target="_blank">LLAMA 3.2 COMMUNITY LICENSE
112
+ AGREEMENT</a><br>
113
+ πŸ‘‰ <a href="https://huggingface.co/collections/meta-llama/llama-32-66f448ffc8c32f949b04c8cf" target="_blank">Collection
114
+ on Hugging Face</a><br>
115
+ πŸ‘‰ <a href="https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/" target="_blank">Technical
116
+ Paper</a>
117
+ </p>
118
+
119
+ <h2>Qwen 3 Collection by Alibaba</h2>
120
+ <p>
121
+ The Chinese tech giant Alibaba is another major player in open-source AI. It releases its language models under the
122
+ Qwen name. The latest version is Qwen 3, which includes both small and large models. The smaller models range in
123
+ size, with parameter counts of 14.8 billion, 8.19 billion, 4.02 billion, 2.03 billion, and even 752 million. This
124
+ collection also includes quantized and GGUF formats.
125
+ </p>
126
+ <p>
127
+ πŸ‘‰ Licence: <a href="https://www.apache.org/licenses/LICENSE-2.0" target="_blank">Apache 2.0</a><br>
128
+ πŸ‘‰ <a href="https://huggingface.co/collections/Qwen/qwen3-67dd247413f0e2e4f653967f" target="_blank">Collection on
129
+ Hugging Face</a><br>
130
+ πŸ‘‰ <a href="https://github.com/QwenLM/Qwen3/blob/main/Qwen3_Technical_Report.pdf" target="_blank">Technical
131
+ Report</a>
132
+ </p>
133
+
134
+ <hr style="border: none; height: 1px; background-color: #ccc;">
135
+
136
+ <p>This list is not limited to these five. You can explore more open-source models at:</p>
137
+ <ul>
138
+ <li><a href="https://huggingface.co/databricks" target="_blank">Databricks</a></li>
139
+ <li><a href="https://huggingface.co/Cohere" target="_blank">Cohere</a></li>
140
+ <li><a href="https://huggingface.co/deepseek-ai" target="_blank">Deepseek</a></li>
141
+ <li><a href="https://huggingface.co/collections/HuggingFaceTB/smollm-6695016cad7167254ce15966" target="_blank">SmolLM</a>
142
+ </li>
143
+ <li><a href="https://huggingface.co/stabilityai" target="_blank">Stability AI</a></li>
144
+ <li><a href="https://huggingface.co/ibm-granite" target="_blank">IBM Granite</a></li>
145
+ </ul>
146
+
147
+ <hr style="border: none; height: 1px; background-color: #ccc;">
148
+
149
+ <p>* Cover photo generated with <a href="https://ideogram.ai/" target="_blank">Ideogram</a></p>
150
+ <p>* All models are available on Hugging Face.</p>
151
+
152
+ </body>
153
  </html>
style.css DELETED
@@ -1,28 +0,0 @@
1
- body {
2
- padding: 2rem;
3
- font-family: -apple-system, BlinkMacSystemFont, "Arial", sans-serif;
4
- }
5
-
6
- h1 {
7
- font-size: 16px;
8
- margin-top: 0;
9
- }
10
-
11
- p {
12
- color: rgb(107, 114, 128);
13
- font-size: 15px;
14
- margin-bottom: 10px;
15
- margin-top: 5px;
16
- }
17
-
18
- .card {
19
- max-width: 620px;
20
- margin: 0 auto;
21
- padding: 16px;
22
- border: 1px solid lightgray;
23
- border-radius: 16px;
24
- }
25
-
26
- .card p:last-child {
27
- margin-bottom: 0;
28
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
styles.css ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ body {
2
+ font-family: "Segoe UI", Tahoma, Geneva, Verdana, sans-serif;
3
+ background-color: #f8f9fa;
4
+ color: #212529;
5
+ line-height: 1.6;
6
+ padding: 2rem;
7
+ max-width: 900px;
8
+ margin: auto;
9
+ }
10
+ h1 {
11
+ color: #0d6efd;
12
+ border-bottom: 2px solid #dee2e6;
13
+ padding-bottom: 0.5rem;
14
+ }
15
+ h2 {
16
+ color: #198754;
17
+ margin-top: 2rem;
18
+ }
19
+ a {
20
+ color: #0d6efd;
21
+ text-decoration: none;
22
+ }
23
+ a:hover {
24
+ text-decoration: underline;
25
+ }
26
+ code {
27
+ background-color: #e9ecef;
28
+ padding: 0.2rem 0.4rem;
29
+ border-radius: 0.25rem;
30
+ font-family: monospace;
31
+ }
32
+ .cover-image {
33
+ max-width: 100%;
34
+ height: auto;
35
+ margin: 1rem 0;
36
+ }