File size: 10,242 Bytes
eae65f4
 
0380c4f
 
5f85cf4
eae65f4
0380c4f
 
 
 
 
 
 
 
 
 
5f85cf4
 
 
0380c4f
5f85cf4
 
 
0380c4f
5f85cf4
0380c4f
 
5f85cf4
 
0380c4f
 
 
 
 
 
5f85cf4
 
eae65f4
0380c4f
 
 
5f85cf4
 
0380c4f
 
 
5f85cf4
 
 
 
0380c4f
 
5f85cf4
eae65f4
0380c4f
 
 
 
 
 
 
 
 
5f85cf4
 
0380c4f
5f85cf4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0380c4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import gradio as gr
import pandas as pd
import os
import shutil
import json

# Function to load leaderboard data from a CSV file
def load_leaderboard_data(csv_file_path):
    try:
        df = pd.read_csv(csv_file_path)
        return df
    except Exception as e:
        print(f"Error loading CSV file: {e}")
        return pd.DataFrame()  # Return an empty DataFrame in case of error

# Function to process uploaded JSON file
def process_json_file(file):
    if file is None:
        return None, "Please upload a JSON file."
    try:
        with open(file.name, 'r') as f:
            data = json.load(f)
        return data, None
    except Exception as e:
        return None, f"Error reading JSON file: {str(e)}"

# Function to save the uploaded JSON file
def save_json_file(file):
    if file is None:
        return "No file uploaded."

    # Define the directory to save uploaded files
    save_dir = "uploaded_jsons"
    os.makedirs(save_dir, exist_ok=True)

    # Get the original filename
    original_filename = os.path.basename(file.name)

    # Define the path to save the file
    save_path = os.path.join(save_dir, original_filename)

    # Copy the uploaded file to the save directory
    shutil.copy2(file.name, save_path)

    return f"File saved to {save_path}"

# Load the leaderboard data
leaderboard1 = load_leaderboard_data("leaderboard_swe.csv")
leaderboard2 = load_leaderboard_data("leaderboard_gaia.csv")

# Create the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# 🥇 TRAIL: Trace Reasoning and Agentic Issue Localization Leaderboard")
    with gr.Row():
        with gr.Column():
            gr.Markdown("## TRAIL-SWE Leaderboard")
            gr.Dataframe(leaderboard1)
        with gr.Column():
            gr.Markdown("## TRAIL-GAIA Leaderboard")
            gr.Dataframe(leaderboard2)
    
    with gr.Blocks() as submit_page:
        gr.Markdown("## Submit Your JSON File Here")
        file_input = gr.File(label="Upload JSON File", file_types=['.json'])
        json_preview = gr.JSON(label="JSON Preview")
        submit_button = gr.Button("Submit", interactive=True)
        output = gr.Textbox(label="Status")
        
        def handle_submission(file):
            if file is None:
                return None, "Please upload a JSON file."
            try:
                # Process and preview the JSON
                with open(file.name, 'r') as f:
                    data = json.load(f)
                # Save the file
                save_result = save_json_file(file)
                return data, save_result
            except Exception as e:
                return None, f"Error: {str(e)}"
        
        submit_button.click(
            fn=handle_submission,
            inputs=[file_input],
            outputs=[json_preview, output]
        )

if __name__ == "__main__":
    demo.launch()



"""
import gradio as gr
import pandas as pd
import os
import json
import uuid
import hashlib
from datetime import datetime
from huggingface_hub import HfApi, login, HfFolder

# Configuration
LEADERBOARD_CSV = "leaderboard.csv"
SUBMISSIONS_FOLDER = "submissions"
CONFIG_FILE = "config.json"
DEFAULT_COLUMNS = ["rank", "submission_name", "score", "user", "timestamp"]
VERIFY_USERS = False  # Set to True to enable HF authentication

# Default configuration
DEFAULT_CONFIG = {
    "title": "Hugging Face Competition Leaderboard",
    "description": "Submit your results for the competition",
    "metric_name": "Score",
    "higher_is_better": True,
    "max_submissions_per_user": 5,
    "allow_submission_edits": True
}

# Ensure submissions folder exists
os.makedirs(SUBMISSIONS_FOLDER, exist_ok=True)

# Load or create config
if os.path.exists(CONFIG_FILE):
    with open(CONFIG_FILE, "r") as f:
        config = json.load(f)
else:
    config = DEFAULT_CONFIG
    with open(CONFIG_FILE, "w") as f:
        json.dump(config, f, indent=2)

# Initialize leaderboard if it doesn't exist
if not os.path.exists(LEADERBOARD_CSV):
    pd.DataFrame(columns=DEFAULT_COLUMNS).to_csv(LEADERBOARD_CSV, index=False)

def read_leaderboard():
    #Read the current leaderboard
    if os.path.exists(LEADERBOARD_CSV):
        df = pd.read_csv(LEADERBOARD_CSV)
        return df
    return pd.DataFrame(columns=DEFAULT_COLUMNS)

def verify_user(username, token):
    #Verify a user with their Hugging Face token
    if not VERIFY_USERS:
        return True
        
    try:
        api = HfApi(token=token)
        user_info = api.whoami()
        return user_info["name"] == username
    except:
        return False

def count_user_submissions(username):
    #Count how many submissions a user already has
    df = read_leaderboard()
    return len(df[df["user"] == username])

def update_leaderboard():
    #Update the leaderboard based on submissions
    # Read all submissions
    submissions = []
    for filename in os.listdir(SUBMISSIONS_FOLDER):
        if filename.endswith(".json"):
            with open(os.path.join(SUBMISSIONS_FOLDER, filename), "r") as f:
                try:
                    data = json.load(f)
                    submissions.append(data)
                except json.JSONDecodeError:
                    print(f"Error decoding {filename}")
    
    if not submissions:
        return pd.DataFrame(columns=DEFAULT_COLUMNS)
    
    # Create dataframe and sort by score
    df = pd.DataFrame(submissions)
    
    # Sort based on configuration (higher or lower is better)
    ascending = not config.get("higher_is_better", True)
    df = df.sort_values("score", ascending=ascending)
    
    # Add rank
    df["rank"] = range(1, len(df) + 1)
    
    # Save updated leaderboard
    df.to_csv(LEADERBOARD_CSV, index=False)
    return df

def submit(submission_name, score, username, hf_token="", submission_details=None):
    #Add a new submission to the leaderboard
    if not submission_name or not username:
        return "Submission name and username are required", None
    
    try:
        score = float(score)
    except ValueError:
        return "Score must be a valid number", None
    
    # Verify user if enabled
    if VERIFY_USERS and not verify_user(username, hf_token):
        return "Invalid Hugging Face credentials", None
    
    # Check submission limit
    max_submissions = config.get("max_submissions_per_user", 5)
    if count_user_submissions(username) >= max_submissions:
        return f"You've reached the maximum of {max_submissions} submissions", None
    
    # Create submission entry
    submission_id = str(uuid.uuid4())[:8]
    submission = {
        "submission_id": submission_id,
        "submission_name": submission_name,
        "score": score,
        "user": username,
        "timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    }
    
    # Add optional details
    if submission_details:
        submission["details"] = submission_details
    
    # Save submission to file
    filename = f"{username}_{submission_name.replace(' ', '_')}_{submission_id}.json"
    with open(os.path.join(SUBMISSIONS_FOLDER, filename), "w") as f:
        json.dump(submission, f)
    
    # Update leaderboard
    leaderboard = update_leaderboard()
    return f"Submission '{submission_name}' added successfully!", leaderboard

def render_leaderboard():
    #Display the current leaderboard
    df = update_leaderboard()
    if len(df) == 0:
        return "No submissions yet."
    
    # Format the dataframe for display
    display_df = df[DEFAULT_COLUMNS].copy()
    return display_df

# Create the Gradio interface
with gr.Blocks(title=config["title"]) as demo:
    gr.Markdown(f"# {config['title']}")
    gr.Markdown(f"{config['description']}")
    
    with gr.Tab("Leaderboard"):
        gr.Markdown("## Current Rankings")
        metric_name = config.get("metric_name", "Score")
        higher_better = "higher is better" if config.get("higher_is_better", True) else "lower is better"
        gr.Markdown(f"*Ranked by {metric_name} ({higher_better})*")
        
        leaderboard_output = gr.Dataframe(
            headers=["Rank", "Submission", metric_name, "User", "Timestamp"],
            datatype=["number", "str", "number", "str", "str"],
            interactive=False
        )
        refresh_btn = gr.Button("Refresh Leaderboard")
        refresh_btn.click(render_leaderboard, inputs=[], outputs=[leaderboard_output])
    
    with gr.Tab("Submit"):
        gr.Markdown("## Submit Your Results")
        with gr.Row():
            with gr.Column():
                submission_name = gr.Textbox(label="Submission Name", placeholder="MyAwesomeModel v1.0")
                score = gr.Number(label=metric_name, precision=4)
                username = gr.Textbox(label="Username", placeholder="Your Hugging Face username")
                
                # Only show token field if verification is enabled
                if VERIFY_USERS:
                    hf_token = gr.Textbox(
                        label="Hugging Face Token", 
                        placeholder="hf_...",
                        type="password"
                    )
                else:
                    hf_token = gr.Textbox(visible=False)
                
                submission_details = gr.Textbox(
                    label="Additional Details (optional)", 
                    placeholder="Model details, training info, etc.",
                    lines=5
                )
                submit_btn = gr.Button("Submit to Leaderboard")
        
        submit_output = gr.Markdown()
        submission_leaderboard = gr.Dataframe(
            headers=["Rank", "Submission", metric_name, "User", "Timestamp"],
            datatype=["number", "str", "number", "str", "str"],
            interactive=False
        )
        
        submit_btn.click(
            submit, 
            inputs=[submission_name, score, username, hf_token, submission_details], 
            outputs=[submit_output, submission_leaderboard]
        )
    
    # Add admin tab if desired
    with gr.Tab("About"):
        gr.Markdown("## About This Leaderboard")
    
    # Initialize the leaderboard on load
    demo.load(render_leaderboard, inputs=[], outputs=[leaderboard_output])

if __name__ == "__main__":
    demo.launch()
"""