import os from dotenv import load_dotenv from fastapi import FastAPI, HTTPException, Request from fastapi.responses import StreamingResponse, HTMLResponse, JSONResponse from pydantic import BaseModel import httpx import requests import re import json from typing import Optional load_dotenv() app = FastAPI() # Get API keys and secret endpoint from environment variables api_keys_str = os.getenv('API_KEYS') valid_api_keys = api_keys_str.split(',') if api_keys_str else [] secret_api_endpoint = os.getenv('SECRET_API_ENDPOINT') secret_api_endpoint_2 = os.getenv('SECRET_API_ENDPOINT_2') secret_api_endpoint_3 = os.getenv('SECRET_API_ENDPOINT_3') # New endpoint for searchgpt # Validate if the main secret API endpoints are set if not secret_api_endpoint or not secret_api_endpoint_2 or not secret_api_endpoint_3: raise HTTPException(status_code=500, detail="API endpoint(s) are not configured in environment variables.") # Define models that should use the secondary endpoint alternate_models = {"gpt-4o-mini", "claude-3-haiku", "llama-3.1-70b", "mixtral-8x7b"} class Payload(BaseModel): model: str messages: list stream: bool def generate_search(query: str, stream: bool = True) -> str: headers = {"User-Agent": ""} prompt = [ {"role": "user", "content": query}, ] # Insert the system prompt at the beginning of the conversation history prompt.insert(0, {"content": "Be Helpful and Friendly", "role": "system"}) payload = { "is_vscode_extension": True, "message_history": prompt, "requested_model": "searchgpt", "user_input": prompt[-1]["content"], } # Use the newly added SECRET_API_ENDPOINT_3 for the search API call chat_endpoint = secret_api_endpoint_3 response = requests.post(chat_endpoint, headers=headers, json=payload, stream=True) # Collect streamed text content streaming_text = "" for value in response.iter_lines(decode_unicode=True, chunk_size=12): modified_value = re.sub("data:", "", value) if modified_value: try: json_modified_value = json.loads(modified_value) content = json_modified_value["choices"][0]["delta"]["content"] if stream: yield f"data: {content}\n\n" streaming_text += content except: continue if not stream: yield streaming_text @app.get("/searchgpt") async def search_gpt(q: str, stream: Optional[bool] = False): if not q: raise HTTPException(status_code=400, detail="Query parameter 'q' is required") if stream: return StreamingResponse( generate_search(q, stream=True), media_type="text/event-stream" ) else: # For non-streaming response, collect all content and return as JSON response_text = "".join([chunk for chunk in generate_search(q, stream=False)]) return JSONResponse(content={"response": response_text}) @app.get("/", response_class=HTMLResponse) async def root(): # Open and read the content of index.html (in the same folder as the app) file_path = "index.html" try: with open(file_path, "r") as file: html_content = file.read() return HTMLResponse(content=html_content) except FileNotFoundError: return HTMLResponse(content="

File not found

", status_code=404) async def get_models(): async with httpx.AsyncClient() as client: try: response = await client.get(f"{secret_api_endpoint}/v1/models", timeout=3) response.raise_for_status() return response.json() except httpx.RequestError as e: raise HTTPException(status_code=500, detail=f"Request failed: {e}") @app.get("/models") async def fetch_models(): return await get_models() @app.post(["/chat/completions", "/v1/chat/completions"]) async def get_completion(payload: Payload, request: Request): # Use the correct endpoint depending on the model type (no authentication now 😉) endpoint = secret_api_endpoint_2 if payload.model in alternate_models else secret_api_endpoint # Use the payload directly as it includes stream and other user data payload_dict = payload.dict() print(payload_dict) # coz i m curious af heheheh :) #data is kept to me only so dont worry async def stream_generator(payload_dict): async with httpx.AsyncClient() as client: try: async with client.stream("POST", f"{endpoint}/v1/chat/completions", json=payload_dict, timeout=10) as response: response.raise_for_status() async for line in response.aiter_lines(): if line: yield f"{line}\n" except httpx.HTTPStatusError as status_err: raise HTTPException(status_code=status_err.response.status_code, detail=f"HTTP error: {status_err}") except httpx.RequestError as req_err: raise HTTPException(status_code=500, detail=f"Streaming failed: {req_err}") except Exception as e: raise HTTPException(status_code=500, detail=f"An unexpected error occurred: {e}") return StreamingResponse(stream_generator(openai_payload), media_type="application/json") @app.on_event("startup") async def startup_event(): print("API endpoints:") print("GET /") print("GET /models") print("GET /searchgpt") # We now have the new search API print("POST /chat/completions") if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=8000)