lokiai / main.py
ParthSadaria's picture
Update main.py
07d4a0b verified
raw
history blame
13.8 kB
import os
from dotenv import load_dotenv
from fastapi import FastAPI, HTTPException, Request
from fastapi.responses import StreamingResponse, HTMLResponse, JSONResponse, FileResponse
from pydantic import BaseModel
import httpx
from pathlib import Path # Import Path from pathlib
import requests
import re
import cloudscraper
import json
from typing import Optional
import datetime
load_dotenv() #idk why this shi
app = FastAPI()
# Get API keys and secret endpoint from environment variables
api_keys_str = os.getenv('API_KEYS') #deprecated -_-
valid_api_keys = api_keys_str.split(',') if api_keys_str else []
secret_api_endpoint = os.getenv('SECRET_API_ENDPOINT')
secret_api_endpoint_2 = os.getenv('SECRET_API_ENDPOINT_2')
secret_api_endpoint_3 = os.getenv('SECRET_API_ENDPOINT_3') # New endpoint for searchgpt
image_endpoint = os.getenv("IMAGE_ENDPOINT")
# Validate if the main secret API endpoints are set
if not secret_api_endpoint or not secret_api_endpoint_2 or not secret_api_endpoint_3:
raise HTTPException(status_code=500, detail="API endpoint(s) are not configured in environment variables.")
# Define models that should use the secondary endpoint
alternate_models = {"gpt-4o-mini", "claude-3-haiku", "llama-3.1-70b", "mixtral-8x7b"}
available_model_ids = []
def check_server_status():
server_down = True
def decorator(func):
async def wrapper(*args, **kwargs):
if server_down:
raise HTTPException(
status_code=503,
detail="Server is currently unavailable. All services are temporarily down."
)
return await func(*args, **kwargs)
return wrapper
return decorator
class Payload(BaseModel):
model: str
messages: list
stream: bool
@app.get("/favicon.ico")
async def favicon():
# The favicon.ico file is in the same directory as the app
favicon_path = Path(__file__).parent / "favicon.ico"
return FileResponse(favicon_path, media_type="image/x-icon")
def generate_search(query: str, systemprompt: Optional[str] = None, stream: bool = True) -> str:
headers = {"User-Agent": ""}
# Use the provided system prompt, or default to "Be Helpful and Friendly"
system_message = systemprompt or "Be Helpful and Friendly"
# Create the prompt history with the user query and system message
prompt = [
{"role": "user", "content": query},
]
prompt.insert(0, {"content": system_message, "role": "system"})
# Prepare the payload for the API request
payload = {
"is_vscode_extension": True,
"message_history": prompt,
"requested_model": "searchgpt",
"user_input": prompt[-1]["content"],
}
# Send the request to the chat endpoint
response = requests.post(secret_api_endpoint_3, headers=headers, json=payload, stream=True)
streaming_text = ""
# Process the streaming response
for value in response.iter_lines(decode_unicode=True):
if value.startswith("data: "):
try:
json_modified_value = json.loads(value[6:])
content = json_modified_value.get("choices", [{}])[0].get("delta", {}).get("content", "")
if content.strip(): # Only process non-empty content
cleaned_response = {
"created": json_modified_value.get("created"),
"id": json_modified_value.get("id"),
"model": "searchgpt",
"object": "chat.completion",
"choices": [
{
"message": {
"content": content
}
}
]
}
if stream:
yield f"data: {json.dumps(cleaned_response)}\n\n"
streaming_text += content
except json.JSONDecodeError:
continue
if not stream:
yield streaming_text
@app.get("/searchgpt")
async def search_gpt(q: str, stream: Optional[bool] = False, systemprompt: Optional[str] = None):
if not q:
raise HTTPException(status_code=400, detail="Query parameter 'q' is required")
if stream:
return StreamingResponse(
generate_search(q, systemprompt=systemprompt, stream=True),
media_type="text/event-stream"
)
else:
# For non-streaming, collect the text and return as JSON response
response_text = "".join([chunk for chunk in generate_search(q, systemprompt=systemprompt, stream=False)])
return JSONResponse(content={"response": response_text})
@app.get("/", response_class=HTMLResponse)
async def root():
# Open and read the content of index.html (in the same folder as the app)
file_path = "index.html"
try:
with open(file_path, "r") as file:
html_content = file.read()
return HTMLResponse(content=html_content)
except FileNotFoundError:
return HTMLResponse(content="<h1>File not found</h1>", status_code=404)
async def get_models():
try:
# Load the models from models.json in the same folder
file_path = Path(__file__).parent / 'models.json'
with open(file_path, 'r') as f:
return json.load(f)
except FileNotFoundError:
raise HTTPException(status_code=404, detail="models.json not found")
except json.JSONDecodeError:
raise HTTPException(status_code=500, detail="Error decoding models.json")
@app.get("/models")
async def fetch_models():
return await get_models()
@app.post("/chat/completions")
@app.post("/v1/chat/completions")
@check_server_status()
async def get_completion(payload: Payload,request: Request):
model_to_use = payload.model if payload.model else "gpt-4o-mini"
# Validate model availability
if model_to_use not in available_model_ids:
raise HTTPException(
status_code=400,
detail=f"Model '{model_to_use}' is not available. Check /models for the available model list."
)
# Proceed with the request handling
payload_dict = payload.dict()
payload_dict["model"] = model_to_use
# Select the appropriate endpoint
endpoint = secret_api_endpoint_2 if model_to_use in alternate_models else secret_api_endpoint
current_time = (datetime.datetime.utcnow() + datetime.timedelta(hours=5, minutes=30)).strftime("%Y-%m-%d %I:%M:%S %p")
aaip = request.client.host
print(f"Time: {current_time}, {aaip}")
print(payload_dict)
async def stream_generator(payload_dict):
scraper = cloudscraper.create_scraper() # Create a CloudScraper session
try:
# Send POST request using CloudScraper
response = scraper.post(f"{endpoint}/v1/chat/completions", json=payload_dict, stream=True)
# Check response status
if response.status_code == 422:
raise HTTPException(status_code=422, detail="Unprocessable entity. Check your payload.")
elif response.status_code == 400:
raise HTTPException(status_code=400, detail="Bad request. Verify input data.")
elif response.status_code == 403:
raise HTTPException(status_code=403, detail="Forbidden. You do not have access to this resource.")
elif response.status_code == 404:
raise HTTPException(status_code=404, detail="The requested resource was not found.")
elif response.status_code >= 500:
raise HTTPException(status_code=500, detail="Server error. Try again later.")
# Stream response lines to the client
for line in response.iter_lines():
if line:
yield line.decode('utf-8') + "\n"
except requests.exceptions.RequestException as req_err:
# Handle request-specific errors
print(response.text)
raise HTTPException(status_code=500, detail=f"Request failed: {req_err}")
except Exception as e:
# Handle unexpected errors
print(response.text)
raise HTTPException(status_code=500, detail=f"An unexpected error occurred: {e}")
return StreamingResponse(stream_generator(payload_dict), media_type="application/json")
# Remove the duplicated endpoint and combine the functionality
@app.get("/images/generations") #pollinations.ai thanks to them :)
async def generate_image(
prompt: str,
model: str = "flux", # Default model
seed: Optional[int] = None,
width: Optional[int] = None,
height: Optional[int] = None,
nologo: Optional[bool] = True,
private: Optional[bool] = None,
enhance: Optional[bool] = None,
):
"""
Generate an image using the Image Generation API.
"""
# Validate the image endpoint
if not image_endpoint:
raise HTTPException(status_code=500, detail="Image endpoint not configured in environment variables.")
# Validate prompt
if not prompt or not prompt.strip():
raise HTTPException(status_code=400, detail="Prompt cannot be empty")
# Sanitize and encode the prompt
sanitized_prompt = prompt.strip()
encoded_prompt = httpx.QueryParams({'prompt': sanitized_prompt}).get('prompt')
# Construct the URL with the encoded prompt
base_url = image_endpoint.rstrip('/') # Remove trailing slash if present
url = f"{base_url}/{encoded_prompt}"
# Prepare query parameters with validation
params = {}
if model and isinstance(model, str):
params['model'] = model
if seed is not None and isinstance(seed, int):
params['seed'] = seed
if width is not None and isinstance(width, int) and 64 <= width <= 2048:
params['width'] = width
if height is not None and isinstance(height, int) and 64 <= height <= 2048:
params['height'] = height
if nologo is not None:
params['nologo'] = str(nologo).lower()
if private is not None:
params['private'] = str(private).lower()
if enhance is not None:
params['enhance'] = str(enhance).lower()
try:
timeout = httpx.Timeout(60.0) # Set a reasonable timeout
async with httpx.AsyncClient(timeout=timeout) as client:
response = await client.get(url, params=params, follow_redirects=True)
# Check for various error conditions
if response.status_code == 404:
raise HTTPException(status_code=404, detail="Image generation service not found")
elif response.status_code == 400:
raise HTTPException(status_code=400, detail="Invalid parameters provided to image service")
elif response.status_code == 429:
raise HTTPException(status_code=429, detail="Too many requests to image service")
elif response.status_code != 200:
raise HTTPException(
status_code=response.status_code,
detail=f"Image generation failed with status code {response.status_code}"
)
# Verify content type
content_type = response.headers.get('content-type', '')
if not content_type.startswith('image/'):
raise HTTPException(
status_code=500,
detail=f"Unexpected content type received: {content_type}"
)
return StreamingResponse(
response.iter_bytes(),
media_type=content_type,
headers={
'Cache-Control': 'no-cache',
'Pragma': 'no-cache'
}
)
except httpx.TimeoutException:
raise HTTPException(status_code=504, detail="Image generation request timed out")
except httpx.RequestError as e:
raise HTTPException(status_code=500, detail=f"Failed to contact image service: {str(e)}")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Unexpected error during image generation: {str(e)}")
@app.get("/playground", response_class=HTMLResponse)
async def playground():
# Open and read the content of playground.html (in the same folder as the app)
file_path = "playground.html"
try:
with open(file_path, "r") as file:
html_content = file.read()
return HTMLResponse(content=html_content)
except FileNotFoundError:
return HTMLResponse(content="<h1>playground.html not found</h1>", status_code=404)
def load_model_ids(json_file_path):
try:
with open(json_file_path, 'r') as f:
models_data = json.load(f)
# Extract 'id' from each model object
model_ids = [model['id'] for model in models_data if 'id' in model]
return model_ids
except FileNotFoundError:
print("Error: models.json file not found.")
return []
except json.JSONDecodeError:
print("Error: Invalid JSON format in models.json.")
return []
@app.on_event("startup")
async def startup_event():
global available_model_ids
available_model_ids = load_model_ids("models.json")
print(f"Loaded model IDs: {available_model_ids}")
print("API endpoints:")
print("GET /")
print("GET /models")
print("GET /searchgpt") # We now have the new search API
print("POST /chat/completions")
print("GET /images/generations")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)