Spaces:
Running
Running
File size: 21,261 Bytes
4986fe4 d38c2eb ef215d3 9fa0f10 378f2c3 8834a20 fc764d5 a111cf9 1d32d66 a111cf9 31eab42 ea75284 72b5133 4986fe4 378f2c3 b955cc1 029405b 4986fe4 b955cc1 a111cf9 029405b b3fa7af 4986fe4 a111cf9 b955cc1 378f2c3 72b5133 378f2c3 b955cc1 006f05b 9422734 aeb51aa 9422734 a111cf9 9422734 a111cf9 9422734 a111cf9 9422734 a111cf9 9422734 4d88866 fa65dba a111cf9 4e5813e aeb51aa 1ba1f47 4d88866 8ce4a3a a111cf9 7bee578 a01be99 9422734 a111cf9 9422734 a111cf9 ea75284 a111cf9 9422734 a111cf9 7bee578 9422734 a111cf9 2c1c62a 7ef5d89 c613f2b 7ef5d89 a68045e 614a889 7ef5d89 ac4bad0 3109050 4c42281 a0270ea d03f8cc 4466943 df1c187 4466943 4479164 9d563fc 9bfb2c6 4466943 9bfb2c6 9d563fc ea75284 9d563fc d03f8cc b955cc1 c5cedd6 9d563fc ba11b8c d03f8cc 9f6a21e 31eab42 022ea2a 3109050 d03f8cc 3e08506 d03f8cc 3e08506 d03f8cc 1d32d66 d03f8cc 1d32d66 d03f8cc 1d32d66 4466943 1d32d66 2d6ed81 1d32d66 2d6ed81 1d32d66 4466943 a0270ea 88cbc7b 757b439 36f3cc3 757b439 36f3cc3 757b439 36f3cc3 88cbc7b 36f3cc3 ea75284 757b439 88cbc7b 757b439 88cbc7b 757b439 88cbc7b 757b439 88cbc7b 757b439 36f3cc3 0ebc28b 88cbc7b 757b439 88cbc7b 757b439 88cbc7b 757b439 88cbc7b 36f3cc3 757b439 88cbc7b 36f3cc3 88cbc7b 6a3f7b0 9f6a21e ea75284 314966f c20175b ea75284 4f22928 c20175b ea75284 c20175b ea75284 c20175b 4f22928 c20175b ea75284 7ef5d89 72b5133 7ef5d89 bc88cec a111cf9 0ebc28b 6a84e5c 8e4491b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 |
import os
from dotenv import load_dotenv
from fastapi import FastAPI, HTTPException, Request
from fastapi.responses import StreamingResponse, HTMLResponse, JSONResponse, FileResponse
from pydantic import BaseModel
import httpx
from pathlib import Path # Import Path from pathlib
import requests
import re
import cloudscraper
import json
from typing import Optional
import datetime
from usage_tracker import UsageTracker
usage_tracker = UsageTracker()
load_dotenv() #idk why this shi
app = FastAPI()
# Get API keys and secret endpoint from environment variables
api_keys_str = os.getenv('API_KEYS') #deprecated -_-
valid_api_keys = api_keys_str.split(',') if api_keys_str else []
secret_api_endpoint = os.getenv('SECRET_API_ENDPOINT')
secret_api_endpoint_2 = os.getenv('SECRET_API_ENDPOINT_2')
secret_api_endpoint_3 = os.getenv('SECRET_API_ENDPOINT_3') # New endpoint for searchgpt
image_endpoint = os.getenv("IMAGE_ENDPOINT")
ENDPOINT_ORIGIN = os.getenv('ENDPOINT_ORIGIN')
# Validate if the main secret API endpoints are set
if not secret_api_endpoint or not secret_api_endpoint_2 or not secret_api_endpoint_3:
raise HTTPException(status_code=500, detail="API endpoint(s) are not configured in environment variables.")
# Define models that should use the secondary endpoint
alternate_models = {"gpt-4o-mini", "claude-3-haiku", "llama-3.1-70b", "mixtral-8x7b"}
available_model_ids = []
class Payload(BaseModel):
model: str
messages: list
stream: bool
@app.get("/favicon.ico")
async def favicon():
# The favicon.ico file is in the same directory as the app
favicon_path = Path(__file__).parent / "favicon.ico"
return FileResponse(favicon_path, media_type="image/x-icon")
def generate_search(query: str, systemprompt: Optional[str] = None, stream: bool = True) -> str:
headers = {"User-Agent": ""}
# Use the provided system prompt, or default to "Be Helpful and Friendly"
system_message = systemprompt or "Be Helpful and Friendly"
# Create the prompt history with the user query and system message
prompt = [
{"role": "user", "content": query},
]
prompt.insert(0, {"content": system_message, "role": "system"})
# Prepare the payload for the API request
payload = {
"is_vscode_extension": True,
"message_history": prompt,
"requested_model": "searchgpt",
"user_input": prompt[-1]["content"],
}
# Send the request to the chat endpoint
response = requests.post(secret_api_endpoint_3, headers=headers, json=payload, stream=True)
streaming_text = ""
# Process the streaming response
for value in response.iter_lines(decode_unicode=True):
if value.startswith("data: "):
try:
json_modified_value = json.loads(value[6:])
content = json_modified_value.get("choices", [{}])[0].get("delta", {}).get("content", "")
if content.strip(): # Only process non-empty content
cleaned_response = {
"created": json_modified_value.get("created"),
"id": json_modified_value.get("id"),
"model": "searchgpt",
"object": "chat.completion",
"choices": [
{
"message": {
"content": content
}
}
]
}
if stream:
yield f"data: {json.dumps(cleaned_response)}\n\n"
streaming_text += content
except json.JSONDecodeError:
continue
if not stream:
yield streaming_text
@app.get("/searchgpt")
async def search_gpt(q: str, stream: Optional[bool] = False, systemprompt: Optional[str] = None):
if not q:
raise HTTPException(status_code=400, detail="Query parameter 'q' is required")
usage_tracker.record_request(endpoint="/searchgpt")
if stream:
return StreamingResponse(
generate_search(q, systemprompt=systemprompt, stream=True),
media_type="text/event-stream"
)
else:
# For non-streaming, collect the text and return as JSON response
response_text = "".join([chunk for chunk in generate_search(q, systemprompt=systemprompt, stream=False)])
return JSONResponse(content={"response": response_text})
@app.get("/", response_class=HTMLResponse)
async def root():
# Open and read the content of index.html (in the same folder as the app)
file_path = "index.html"
try:
with open(file_path, "r") as file:
html_content = file.read()
return HTMLResponse(content=html_content)
except FileNotFoundError:
return HTMLResponse(content="<h1>File not found</h1>", status_code=404)
async def get_models():
try:
# Load the models from models.json in the same folder
file_path = Path(__file__).parent / 'models.json'
with open(file_path, 'r') as f:
return json.load(f)
except FileNotFoundError:
raise HTTPException(status_code=404, detail="models.json not found")
except json.JSONDecodeError:
raise HTTPException(status_code=500, detail="Error decoding models.json")
@app.get("/models")
async def fetch_models():
return await get_models()
server_status = True
@app.post("/chat/completions")
@app.post("api/v1/chat/completions")
async def get_completion(payload: Payload, request: Request):
# Check server status
if not server_status:
return JSONResponse(
status_code=503,
content={"message": "Server is under maintenance. Please try again later."}
)
model_to_use = payload.model if payload.model else "gpt-4o-mini"
# Validate model availability
if model_to_use not in available_model_ids:
raise HTTPException(
status_code=400,
detail=f"Model '{model_to_use}' is not available. Check /models for the available model list."
)
usage_tracker.record_request(model=model_to_use, endpoint="/chat/completions")
# Prepare payload
payload_dict = payload.dict()
payload_dict["model"] = model_to_use
# Select the appropriate endpoint
endpoint = secret_api_endpoint_2 if model_to_use in alternate_models else secret_api_endpoint
# Current time and IP logging
current_time = (datetime.datetime.utcnow() + datetime.timedelta(hours=5, minutes=30)).strftime("%Y-%m-%d %I:%M:%S %p")
aaip = request.client.host
print(f"Time: {current_time}, {aaip}")
# print(payload_dict)
scraper = cloudscraper.create_scraper()
async def stream_generator(payload_dict):
# Prepare custom headers
custom_headers = {
'DNT': '1',
# 'Origin': ENDPOINT_ORIGIN,
'Priority': 'u=1, i',
# 'Referer': ENDPOINT_ORIGIN
}
try:
# Send POST request using CloudScraper with custom headers
response = scraper.post(
f"{endpoint}/v1/chat/completions",
json=payload_dict,
headers=custom_headers,
stream=True
)
# Error handling remains the same as in previous version
if response.status_code == 422:
raise HTTPException(status_code=422, detail="Unprocessable entity. Check your payload.")
elif response.status_code == 400:
raise HTTPException(status_code=400, detail="Bad request. Verify input data.")
elif response.status_code == 403:
raise HTTPException(status_code=403, detail="Forbidden. You do not have access to this resource.")
elif response.status_code == 404:
raise HTTPException(status_code=404, detail="The requested resource was not found.")
elif response.status_code >= 500:
raise HTTPException(status_code=500, detail="Server error. Try again later.")
# Stream response lines to the client
for line in response.iter_lines():
if line:
yield line.decode('utf-8') + "\n"
except requests.exceptions.RequestException as req_err:
# Handle request-specific errors
print(response.text)
raise HTTPException(status_code=500, detail=f"Request failed: {req_err}")
except Exception as e:
# Handle unexpected errors
print(response.text)
raise HTTPException(status_code=500, detail=f"An unexpected error occurred: {e}")
return StreamingResponse(stream_generator(payload_dict), media_type="application/json")
# Remove the duplicated endpoint and combine the functionality
@app.api_route("/images/generations", methods=["GET", "POST"]) # Support both GET and POST
async def generate_image(
prompt: Optional[str] = None,
model: str = "flux", # Default model
seed: Optional[int] = None,
width: Optional[int] = None,
height: Optional[int] = None,
nologo: Optional[bool] = True,
private: Optional[bool] = None,
enhance: Optional[bool] = None,
request: Request = None, # Access raw POST data
):
"""
Generate an image using the Image Generation API.
"""
# Validate the image endpoint
if not image_endpoint:
raise HTTPException(status_code=500, detail="Image endpoint not configured in environment variables.")
usage_tracker.record_request(endpoint="/images/generations")
# Handle GET and POST prompts
if request.method == "POST":
try:
body = await request.json() # Parse JSON body
prompt = body.get("prompt", "").strip()
if not prompt:
raise HTTPException(status_code=400, detail="Prompt cannot be empty")
except Exception:
raise HTTPException(status_code=400, detail="Invalid JSON payload")
elif request.method == "GET":
if not prompt or not prompt.strip():
raise HTTPException(status_code=400, detail="Prompt cannot be empty")
prompt = prompt.strip()
# Sanitize and encode the prompt
encoded_prompt = httpx.QueryParams({'prompt': prompt}).get('prompt')
# Construct the URL with the encoded prompt
base_url = image_endpoint.rstrip('/') # Remove trailing slash if present
url = f"{base_url}/{encoded_prompt}"
# Prepare query parameters with validation
params = {}
if model and isinstance(model, str):
params['model'] = model
if seed is not None and isinstance(seed, int):
params['seed'] = seed
if width is not None and isinstance(width, int) and 64 <= width <= 2048:
params['width'] = width
if height is not None and isinstance(height, int) and 64 <= height <= 2048:
params['height'] = height
if nologo is not None:
params['nologo'] = str(nologo).lower()
if private is not None:
params['private'] = str(private).lower()
if enhance is not None:
params['enhance'] = str(enhance).lower()
try:
timeout = httpx.Timeout(60.0) # Set a reasonable timeout
async with httpx.AsyncClient(timeout=timeout) as client:
response = await client.get(url, params=params, follow_redirects=True)
# Check for various error conditions
if response.status_code == 404:
raise HTTPException(status_code=404, detail="Image generation service not found")
elif response.status_code == 400:
raise HTTPException(status_code=400, detail="Invalid parameters provided to image service")
elif response.status_code == 429:
raise HTTPException(status_code=429, detail="Too many requests to image service")
elif response.status_code != 200:
raise HTTPException(
status_code=response.status_code,
detail=f"Image generation failed with status code {response.status_code}"
)
# Verify content type
content_type = response.headers.get('content-type', '')
if not content_type.startswith('image/'):
raise HTTPException(
status_code=500,
detail=f"Unexpected content type received: {content_type}"
)
return StreamingResponse(
response.iter_bytes(),
media_type=content_type,
headers={
'Cache-Control': 'no-cache',
'Pragma': 'no-cache'
}
)
except httpx.TimeoutException:
raise HTTPException(status_code=504, detail="Image generation request timed out")
except httpx.RequestError as e:
raise HTTPException(status_code=500, detail=f"Failed to contact image service: {str(e)}")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Unexpected error during image generation: {str(e)}")
@app.get("/playground", response_class=HTMLResponse)
async def playground():
# Open and read the content of playground.html (in the same folder as the app)
file_path = "playground.html"
try:
with open(file_path, "r") as file:
html_content = file.read()
return HTMLResponse(content=html_content)
except FileNotFoundError:
return HTMLResponse(content="<h1>playground.html not found</h1>", status_code=404)
def load_model_ids(json_file_path):
try:
with open(json_file_path, 'r') as f:
models_data = json.load(f)
# Extract 'id' from each model object
model_ids = [model['id'] for model in models_data if 'id' in model]
return model_ids
except FileNotFoundError:
print("Error: models.json file not found.")
return []
except json.JSONDecodeError:
print("Error: Invalid JSON format in models.json.")
return []
@app.get("/usage")
async def get_usage(days: int = 7):
"""Retrieve usage statistics"""
return usage_tracker.get_usage_summary(days)
@app.get("/usage/page", response_class=HTMLResponse)
async def usage_page():
"""Serve an HTML page showing usage statistics"""
# Retrieve usage data
usage_data = usage_tracker.get_usage_summary()
# Model Usage Table Rows
model_usage_rows = "\n".join([
f"""
<tr>
<td>{model}</td>
<td>{model_data['total_requests']}</td>
<td>{model_data['first_used']}</td>
<td>{model_data['last_used']}</td>
</tr>
""" for model, model_data in usage_data['models'].items()
])
# API Endpoint Usage Table Rows
api_usage_rows = "\n".join([
f"""
<tr>
<td>{endpoint}</td>
<td>{endpoint_data['total_requests']}</td>
<td>{endpoint_data['first_used']}</td>
<td>{endpoint_data['last_used']}</td>
</tr>
""" for endpoint, endpoint_data in usage_data['api_endpoints'].items()
])
# Daily Usage Table Rows
daily_usage_rows = "\n".join([
"\n".join([
f"""
<tr>
<td>{date}</td>
<td>{entity}</td>
<td>{requests}</td>
</tr>
""" for entity, requests in date_data.items()
]) for date, date_data in usage_data['recent_daily_usage'].items()
])
html_content = f"""
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Lokiai AI - Usage Statistics</title>
<link href="https://fonts.googleapis.com/css2?family=Inter:wght@300;400;600&display=swap" rel="stylesheet">
<style>
:root {{
--bg-dark: #0f1011;
--bg-darker: #070708;
--text-primary: #e6e6e6;
--text-secondary: #8c8c8c;
--border-color: #2c2c2c;
--accent-color: #3a6ee0;
--accent-hover: #4a7ef0;
}}
body {{
font-family: 'Inter', sans-serif;
background-color: var(--bg-dark);
color: var(--text-primary);
max-width: 1200px;
margin: 0 auto;
padding: 40px 20px;
line-height: 1.6;
}}
.logo {{
display: flex;
align-items: center;
justify-content: center;
margin-bottom: 30px;
}}
.logo h1 {{
font-weight: 600;
font-size: 2.5em;
color: var(--text-primary);
margin-left: 15px;
}}
.logo img {{
width: 60px;
height: 60px;
border-radius: 10px;
}}
.container {{
background-color: var(--bg-darker);
border-radius: 12px;
padding: 30px;
box-shadow: 0 15px 40px rgba(0,0,0,0.3);
border: 1px solid var(--border-color);
}}
h2, h3 {{
color: var(--text-primary);
border-bottom: 2px solid var(--border-color);
padding-bottom: 10px;
font-weight: 500;
}}
.total-requests {{
background-color: var(--accent-color);
color: white;
text-align: center;
padding: 15px;
border-radius: 8px;
margin-bottom: 30px;
font-weight: 600;
letter-spacing: -0.5px;
}}
table {{
width: 100%;
border-collapse: separate;
border-spacing: 0;
margin-bottom: 30px;
background-color: var(--bg-dark);
border-radius: 8px;
overflow: hidden;
}}
th, td {{
border: 1px solid var(--border-color);
padding: 12px;
text-align: left;
transition: background-color 0.3s ease;
}}
th {{
background-color: #1e1e1e;
color: var(--text-primary);
font-weight: 600;
text-transform: uppercase;
font-size: 0.9em;
}}
tr:nth-child(even) {{
background-color: rgba(255,255,255,0.05);
}}
tr:hover {{
background-color: rgba(62,100,255,0.1);
}}
@media (max-width: 768px) {{
.container {{
padding: 15px;
}}
table {{
font-size: 0.9em;
}}
}}
</style>
</head>
<body>
<div class="container">
<div class="logo">
<img src="" alt="Lokai AI Logo">
<h1>Lokiai AI</h1>
</div>
<div class="total-requests">
Total API Requests: {usage_data['total_requests']}
</div>
<h2>Model Usage</h2>
<table>
<tr>
<th>Model</th>
<th>Total Requests</th>
<th>First Used</th>
<th>Last Used</th>
</tr>
{model_usage_rows}
</table>
<h2>API Endpoint Usage</h2>
<table>
<tr>
<th>Endpoint</th>
<th>Total Requests</th>
<th>First Used</th>
<th>Last Used</th>
</tr>
{api_usage_rows}
</table>
<h2>Daily Usage (Last 7 Days)</h2>
<table>
<tr>
<th>Date</th>
<th>Entity</th>
<th>Requests</th>
</tr>
{daily_usage_rows}
</table>
</div>
</body>
</html>
"""
return HTMLResponse(content=html_content)
@app.on_event("startup")
async def startup_event():
global available_model_ids
available_model_ids = load_model_ids("models.json")
print(f"Loaded model IDs: {available_model_ids}")
print("API endpoints:")
print("GET /")
print("GET /models")
print("GET /searchgpt")
print("POST /chat/completions")
print("GET /images/generations")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)
|