File size: 5,861 Bytes
a01ef8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright (c) 2022 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
#

import os
import tensorflow as tf

from tlt import TLT_BASE_DIR
from tlt.datasets.tf_dataset import TFDataset
from tlt.datasets.text_classification.text_classification_dataset import TextClassificationDataset
from tlt.utils.dataset_utils import prepare_huggingface_input_data
from tlt.utils.file_utils import read_json_file
from tlt.utils.inc_utils import INCTFDataLoader
from downloader.datasets import DataDownloader

DATASET_CONFIG_DIR = os.path.join(TLT_BASE_DIR, "datasets/configs")
config_file = os.path.join(DATASET_CONFIG_DIR, "tf_text_classification_datasets.json")
config_dict = read_json_file(config_file)
DATASETS = list(config_dict.keys())


class TFDSTextClassificationDataset(TFDataset, TextClassificationDataset):
    """
    A text classification dataset from the TensorFlow datasets catalog
    """
    def __init__(self, dataset_dir, dataset_name, split=["train"], shuffle_files=True, **kwargs):
        if not isinstance(split, list):
            raise ValueError("Value of split argument must be a list.")

        TextClassificationDataset.__init__(self, dataset_dir, dataset_name, "tf_datasets")

        if dataset_name not in DATASETS:
            raise ValueError("Dataset name is not supported. Choose from: {}".format(DATASETS))

        # as_supervised gives us the (input, label) structure that the model expects
        as_supervised = True

        # Glue datasets don't support as_supervised=True, so we need to set as_supervised=False, and then fix
        # the data format after loading
        if "glue" in dataset_name:
            as_supervised = False

        downloader = DataDownloader(dataset_name, dataset_dir=dataset_dir, catalog='tfds', as_supervised=as_supervised,
                                    shuffle_files=shuffle_files, with_info=True)
        data, self._info = downloader.download(split=split)

        # Since glue datasets don't support the supervised (input, label) structure, we have to manually format it
        if "glue" in dataset_name:
            for split_id in range(len(data)):
                data[split_id] = data[split_id].map(lambda x: (x['sentence'], x['label']))

        self._dataset = None
        self._train_subset = None
        self._validation_subset = None
        self._test_subset = None
        self._preprocessed = None

        if len(split) == 1:
            self._validation_type = None  # Train & evaluate on the whole dataset
            self._dataset = data[0]
        else:
            self._validation_type = 'defined_split'  # Defined by user or TFDS
            for i, s in enumerate(split):
                if s == 'train':
                    self._train_subset = data[i]
                elif s == 'validation':
                    self._validation_subset = data[i]
                elif s == 'test':
                    self._test_subset = data[i]
                self._dataset = data[i] if self._dataset is None else self._dataset.concatenate(data[i])

    @property
    def class_names(self):
        if "label" in self._info.features.keys():
            return self._info.features["label"].names
        else:
            return []

    @property
    def info(self):
        return {'dataset_info': self._info, 'preprocessing_info': self._preprocessed}

    @property
    def dataset(self):
        return self._dataset

    def preprocess(self, batch_size):
        """
            Batch the dataset

            Args:
                batch_size (int): desired batch size

            Raises:
                TypeError: if the batch_size is not a positive integer
                ValueError: if the dataset is not defined or has already been processed
        """
        if not isinstance(batch_size, int) or batch_size < 1:
            raise ValueError("batch_size should be a positive integer")

        if self._preprocessed:
            raise ValueError("Data has already been preprocessed: {}".format(self._preprocessed))

        # Get the non-None splits
        split_list = ['_dataset', '_train_subset', '_validation_subset', '_test_subset']
        subsets = [s for s in split_list if getattr(self, s, None)]
        for subset in subsets:
            setattr(self, subset, getattr(self, subset).cache())
            setattr(self, subset, getattr(self, subset).batch(batch_size))
            setattr(self, subset, getattr(self, subset).prefetch(tf.data.AUTOTUNE))
        self._preprocessed = {'batch_size': batch_size}

    def get_inc_dataloaders(self, hub_name, max_seq_length):
        calib_data, calib_labels = prepare_huggingface_input_data(self.train_subset, hub_name, max_seq_length)
        calib_data['label'] = tf.convert_to_tensor(calib_labels)

        eval_data, eval_labels = prepare_huggingface_input_data(self.validation_subset, hub_name, max_seq_length)
        eval_data['label'] = tf.convert_to_tensor(eval_labels)

        calib_data.pop('token_type_ids')
        eval_data.pop('token_type_ids')

        calib_dataloader = INCTFDataLoader(calib_data, batch_size=self._preprocessed['batch_size'])
        eval_dataloader = INCTFDataLoader(eval_data, batch_size=self._preprocessed['batch_size'])

        return calib_dataloader, eval_dataloader