Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,91 +1,146 @@
|
|
1 |
import gradio as gr
|
2 |
import matplotlib.pyplot as plt
|
3 |
import numpy as np
|
|
|
|
|
4 |
|
5 |
# Predefined hyperparameter sets
|
6 |
PARAM_SETS = {
|
7 |
-
"
|
8 |
-
"
|
9 |
}
|
10 |
|
11 |
-
def
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
plt.
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
return plt
|
20 |
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
"""Process inputs and return results"""
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
# Calculate result (example calculation)
|
35 |
-
result = (input1 * p1 + input2 * p2) * (p3 + p4)
|
36 |
|
37 |
-
return plot,
|
38 |
|
39 |
# Create interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
with gr.Blocks() as demo:
|
41 |
-
gr.Markdown(
|
42 |
|
43 |
with gr.Row():
|
44 |
with gr.Column():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
# Hyperparameter selection section
|
46 |
param_set = gr.Dropdown(
|
47 |
choices=["Custom"] + list(PARAM_SETS.keys()),
|
48 |
-
value=
|
49 |
-
label="Select
|
50 |
)
|
51 |
|
52 |
# Custom parameter inputs
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
# Input values
|
59 |
-
input1 = gr.Number(value=1.0, label="Input Value 1")
|
60 |
-
input2 = gr.Number(value=1.0, label="Input Value 2")
|
61 |
|
62 |
-
submit_btn = gr.Button("
|
63 |
|
|
|
|
|
64 |
with gr.Column():
|
65 |
# Output section
|
66 |
-
plot_output = gr.Plot(label="
|
67 |
-
result_output = gr.
|
|
|
68 |
|
69 |
# Auto-fill parameters when selecting predefined sets
|
70 |
def update_params(param_set):
|
71 |
if param_set in PARAM_SETS:
|
72 |
params = PARAM_SETS[param_set]
|
73 |
-
return [params["
|
74 |
return [gr.skip(), gr.skip(), gr.skip(), gr.skip()]
|
75 |
|
76 |
param_set.change(
|
77 |
update_params,
|
78 |
inputs=[param_set],
|
79 |
-
outputs=[
|
80 |
)
|
81 |
|
82 |
# Submit button event
|
83 |
-
submit_btn.click(
|
84 |
process_inputs,
|
85 |
-
inputs=[
|
86 |
-
|
87 |
outputs=[plot_output, result_output]
|
88 |
)
|
89 |
|
90 |
-
|
91 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import matplotlib.pyplot as plt
|
3 |
import numpy as np
|
4 |
+
import math
|
5 |
+
from matplotlib.ticker import FuncFormatter
|
6 |
|
7 |
# Predefined hyperparameter sets
|
8 |
PARAM_SETS = {
|
9 |
+
"Stack-V2-Python": {"E": 0.69123678, "A": 0.01130616 * 1e9, "k": 0.393463, "alpha": 0.18937067},
|
10 |
+
"Pile": {"E": 1.28254036, "A": 0.2035367 * 1e9, "k": 0.33027934, "alpha": 0.19479807}
|
11 |
}
|
12 |
|
13 |
+
def pred_loss(E, A, k, alpha, n, p):
|
14 |
+
return E + (A / (n * (1 + np.log(p) * k))) ** alpha
|
15 |
+
|
16 |
+
def generate_plot(E, A, k, alpha):
|
17 |
+
plt.clf()
|
18 |
+
colors = ['#2B83BA', '#7BB7D6', '#ED7D5F', '#D7191C']
|
19 |
+
ax = plt.gca()
|
20 |
+
for i, p in enumerate([1, 2, 4, 8]):
|
21 |
+
x_plot = np.linspace(535813376 * 0.9, 4353203200 * 1.1, 100)
|
22 |
+
y_plot = pred_loss(E, A, k, alpha, x_plot, p)
|
23 |
+
ax.plot(x_plot, y_plot, marker=None, markersize=1, linewidth=3, color=colors[int(math.log(p, 2))], label=f"$P={p}$")
|
24 |
+
|
25 |
+
ax.legend(fontsize=12)
|
26 |
+
# ax.set_xscale("log")
|
27 |
+
# ax.set_yscale("log")
|
28 |
+
|
29 |
+
def billions(x, pos):
|
30 |
+
if x < 1e9:
|
31 |
+
result = ""
|
32 |
+
else:
|
33 |
+
result = f'{x * 1e-9:.1f}B'
|
34 |
+
return result
|
35 |
+
|
36 |
+
ax.xaxis.set_major_formatter(FuncFormatter(billions))
|
37 |
+
ax.xaxis.set_minor_formatter(FuncFormatter(billions))
|
38 |
+
ax.yaxis.set_major_formatter(FuncFormatter(lambda x, pos: f"{x:.2f}"))
|
39 |
+
ax.yaxis.set_minor_formatter(FuncFormatter(lambda x, pos: f"{x:.2f}"))
|
40 |
+
ax.set_xlim(535813376 * 0.9, 4353203200 * 1.1)
|
41 |
+
ax.set_ylim(ax.get_ylim()[0] * 1, ax.get_ylim()[1] * 1.01)
|
42 |
+
|
43 |
+
ax.text(0.03, 0.03, f"$E={E}$\n$A={A}$\n$k={k}$\n$\\alpha={alpha}$", transform=ax.transAxes, fontsize=10, verticalalignment='bottom', multialignment='left')
|
44 |
+
|
45 |
+
ax.spines['top'].set_visible(False)
|
46 |
+
ax.spines['right'].set_visible(False)
|
47 |
+
|
48 |
+
ax.set_xlabel('Parameters (Non-Embedding)', fontsize=12)
|
49 |
+
ax.set_ylabel(f'Loss', fontsize=12)
|
50 |
return plt
|
51 |
|
52 |
+
|
53 |
+
OUTPUT_TEMPLATE = """Loss for a {n}B model when P={p} is: **{loss}**. It is equivalant to:
|
54 |
+
|
55 |
+
- A {n1}B model with P=1;
|
56 |
+
- A {n2}B model with P=2;
|
57 |
+
- A {n4}B model with P=4;
|
58 |
+
- A {n8}B model with P=8;
|
59 |
+
|
60 |
+
Note: The equivalent parameters are for reference only. In some reasoning tasks, scaling the parallel streams will obtain more performance gains than the loss benefits!
|
61 |
+
|
62 |
+
Enjoy it! π"""
|
63 |
+
|
64 |
+
def process_inputs(E, A, k, alpha, n, p):
|
65 |
"""Process inputs and return results"""
|
66 |
+
if n < 1000:
|
67 |
+
n = n * 1e9
|
68 |
+
plot = generate_plot(E, A, k, alpha)
|
69 |
+
loss = pred_loss(E, A, k, alpha, n, p)
|
70 |
+
|
71 |
+
n1 = n * (k * np.log(p) + 1) / (k * np.log(1) + 1) / 1e9
|
72 |
+
n2 = n * (k * np.log(p) + 1) / (k * np.log(2) + 1) / 1e9
|
73 |
+
n4 = n * (k * np.log(p) + 1) / (k * np.log(4) + 1) / 1e9
|
74 |
+
n8 = n * (k * np.log(p) + 1) / (k * np.log(8) + 1) / 1e9
|
|
|
|
|
|
|
75 |
|
76 |
+
return plot, OUTPUT_TEMPLATE.format(n=round(n / 1e9, 2), p=p, n1=round(n1, 2), n2=round(n2, 2), n4=round(n4, 2), n8=round(n8, 2), loss=loss)
|
77 |
|
78 |
# Create interface
|
79 |
+
|
80 |
+
HEAD = """# Parallel Scaling Law Visualization
|
81 |
+
|
82 |
+
$$
|
83 |
+
\\text{Loss}=E+\\left(
|
84 |
+
\\frac{A}{\\text{Parameters}\\times (1+k\\log P)}
|
85 |
+
\\right)^{\\alpha}
|
86 |
+
$$
|
87 |
+
"""
|
88 |
+
|
89 |
with gr.Blocks() as demo:
|
90 |
+
gr.Markdown(HEAD)
|
91 |
|
92 |
with gr.Row():
|
93 |
with gr.Column():
|
94 |
+
|
95 |
+
# Input values
|
96 |
+
N = gr.Number(value=2.8, label="N: Number of Non-Embedding Model Parameters (in Billion)")
|
97 |
+
P = gr.Number(value=4, label="P: Number of Parallel Streams")
|
98 |
+
|
99 |
+
gr.Markdown("---")
|
100 |
+
|
101 |
# Hyperparameter selection section
|
102 |
param_set = gr.Dropdown(
|
103 |
choices=["Custom"] + list(PARAM_SETS.keys()),
|
104 |
+
value=list(PARAM_SETS.keys())[0],
|
105 |
+
label="Select our pre-fitted parameters for two datasets"
|
106 |
)
|
107 |
|
108 |
# Custom parameter inputs
|
109 |
+
param_E = gr.Number(value=PARAM_SETS["Stack-V2-Python"]['E'], label="E")
|
110 |
+
param_A = gr.Number(value=PARAM_SETS["Stack-V2-Python"]['A'], label="A")
|
111 |
+
param_k = gr.Number(value=PARAM_SETS["Stack-V2-Python"]['k'], label="k")
|
112 |
+
param_alpha = gr.Number(value=PARAM_SETS["Stack-V2-Python"]['alpha'], label="alpha")
|
|
|
|
|
|
|
|
|
113 |
|
114 |
+
submit_btn = gr.Button("Estimate Loss and Equivalant Model Parameters")
|
115 |
|
116 |
+
|
117 |
+
plot, output = process_inputs(PARAM_SETS["Stack-V2-Python"]['E'], PARAM_SETS["Stack-V2-Python"]['A'], PARAM_SETS["Stack-V2-Python"]['k'], PARAM_SETS["Stack-V2-Python"]['alpha'], 2.8, 4)
|
118 |
with gr.Column():
|
119 |
# Output section
|
120 |
+
plot_output = gr.Plot(label="Scaling Law Curve", value=plot)
|
121 |
+
result_output = gr.Markdown(label="Result", value=output)
|
122 |
+
|
123 |
|
124 |
# Auto-fill parameters when selecting predefined sets
|
125 |
def update_params(param_set):
|
126 |
if param_set in PARAM_SETS:
|
127 |
params = PARAM_SETS[param_set]
|
128 |
+
return [params["E"], params["A"], params["k"], params["alpha"]]
|
129 |
return [gr.skip(), gr.skip(), gr.skip(), gr.skip()]
|
130 |
|
131 |
param_set.change(
|
132 |
update_params,
|
133 |
inputs=[param_set],
|
134 |
+
outputs=[param_E, param_A, param_k, param_alpha]
|
135 |
)
|
136 |
|
137 |
# Submit button event
|
138 |
+
click_event = submit_btn.click(
|
139 |
process_inputs,
|
140 |
+
inputs=[param_E, param_A, param_k, param_alpha,
|
141 |
+
N, P],
|
142 |
outputs=[plot_output, result_output]
|
143 |
)
|
144 |
|
145 |
+
|
146 |
+
demo.launch()
|