Update app.py
Browse files
app.py
CHANGED
@@ -1,98 +1,18 @@
|
|
1 |
-
import os
|
2 |
-
os.system('pip install dashscope')
|
3 |
import gradio as gr
|
4 |
-
from
|
5 |
-
import dashscope
|
6 |
-
from dashscope import Generation
|
7 |
-
from dashscope.api_entities.dashscope_response import Role
|
8 |
-
from typing import List, Optional, Tuple, Dict
|
9 |
-
from urllib.error import HTTPError
|
10 |
-
default_system = 'You are a helpful assistant.'
|
11 |
|
12 |
-
|
13 |
-
dashscope.api_key = YOUR_API_TOKEN
|
14 |
|
15 |
-
|
16 |
-
|
|
|
17 |
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
system = default_system
|
24 |
-
return system, system, []
|
25 |
-
|
26 |
-
def history_to_messages(history: History, system: str) -> Messages:
|
27 |
-
messages = [{'role': Role.SYSTEM, 'content': system}]
|
28 |
-
for h in history:
|
29 |
-
messages.append({'role': Role.USER, 'content': h[0]})
|
30 |
-
messages.append({'role': Role.ASSISTANT, 'content': h[1]})
|
31 |
-
return messages
|
32 |
-
|
33 |
-
|
34 |
-
def messages_to_history(messages: Messages) -> Tuple[str, History]:
|
35 |
-
assert messages[0]['role'] == Role.SYSTEM
|
36 |
-
system = messages[0]['content']
|
37 |
-
history = []
|
38 |
-
for q, r in zip(messages[1::2], messages[2::2]):
|
39 |
-
history.append([q['content'], r['content']])
|
40 |
-
return system, history
|
41 |
-
|
42 |
-
|
43 |
-
def model_chat(query: Optional[str], history: Optional[History], system: str
|
44 |
-
) -> Tuple[str, str, History]:
|
45 |
-
if query is None:
|
46 |
-
query = ''
|
47 |
-
if history is None:
|
48 |
-
history = []
|
49 |
-
messages = history_to_messages(history, system)
|
50 |
-
messages.append({'role': Role.USER, 'content': query})
|
51 |
-
gen = Generation.call(
|
52 |
-
model = "G1-7B",
|
53 |
-
messages=messages,
|
54 |
-
result_format='message',
|
55 |
-
stream=True
|
56 |
-
)
|
57 |
-
for response in gen:
|
58 |
-
if response.status_code == HTTPStatus.OK:
|
59 |
-
role = response.output.choices[0].message.role
|
60 |
-
response = response.output.choices[0].message.content
|
61 |
-
system, history = messages_to_history(messages + [{'role': role, 'content': response}])
|
62 |
-
yield '', history, system
|
63 |
-
else:
|
64 |
-
raise HTTPError('Request id: %s, Status code: %s, error code: %s, error message: %s' % (
|
65 |
-
response.request_id, response.status_code,
|
66 |
-
response.code, response.message
|
67 |
-
))
|
68 |
-
|
69 |
-
|
70 |
-
with gr.Blocks() as demo:
|
71 |
-
gr.Markdown("""<p align="center"><img src="https://modelscope.cn/api/v1/models/qwen/Qwen-VL-Chat/repo?Revision=master&FilePath=assets/logo.jpg&View=true" style="height: 80px"/><p>""")
|
72 |
-
gr.Markdown("""<center><font size=8>Qwen-1.8B-Chat Bot👾</center>""")
|
73 |
-
gr.Markdown("""<center><font size=4>通义千问-1.8B(Qwen-1.8B) 是阿里云研发的通义千问大模型系列的18亿参数规模的模型。</center>""")
|
74 |
-
|
75 |
-
with gr.Row():
|
76 |
-
with gr.Column(scale=3):
|
77 |
-
system_input = gr.Textbox(value=default_system, lines=1, label='System')
|
78 |
-
with gr.Column(scale=1):
|
79 |
-
modify_system = gr.Button("🛠️ 设置system并清除历史对话", scale=2)
|
80 |
-
system_state = gr.Textbox(value=default_system, visible=False)
|
81 |
-
chatbot = gr.Chatbot(label='G1-7B')
|
82 |
-
textbox = gr.Textbox(lines=2, label='Input')
|
83 |
-
|
84 |
-
with gr.Row():
|
85 |
-
clear_history = gr.Button("🧹 清除历史对话")
|
86 |
-
sumbit = gr.Button("🚀 发送")
|
87 |
-
|
88 |
-
sumbit.click(model_chat,
|
89 |
-
inputs=[textbox, chatbot, system_state],
|
90 |
-
outputs=[textbox, chatbot, system_input])
|
91 |
-
clear_history.click(fn=clear_session,
|
92 |
-
inputs=[],
|
93 |
-
outputs=[textbox, chatbot])
|
94 |
-
modify_system.click(fn=modify_system_session,
|
95 |
-
inputs=[system_input],
|
96 |
-
outputs=[system_state, system_input, chatbot])
|
97 |
-
|
98 |
-
demo.queue(api_open=False).launch(max_threads=10,height=800, share=False)
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
+
pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
|
|
|
5 |
|
6 |
+
def predict(input_img):
|
7 |
+
predictions = pipeline(input_img)
|
8 |
+
return input_img, {p["label"]: p["score"] for p in predictions}
|
9 |
|
10 |
+
gradio_app = gr.Interface(
|
11 |
+
predict,
|
12 |
+
inputs=gr.Image(label="Select hot dog candidate", sources=['upload', 'webcam'], type="pil"),
|
13 |
+
outputs=[gr.Image(label="Processed Image"), gr.Label(label="Result", num_top_classes=2)],
|
14 |
+
title="Hot Dog? Or Not?",
|
15 |
+
)
|
16 |
|
17 |
+
if __name__ == "__main__":
|
18 |
+
gradio_app.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|