Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer | |
import threading | |
import torch | |
# Load base model directly and then add the adapter | |
model = AutoModelForCausalLM.from_pretrained("unsloth/gemma-3-1b-it") | |
# Apply adapter from the fine-tuned version | |
model.load_adapter("Oysiyl/gemma-3-1B-GRPO") | |
tokenizer = AutoTokenizer.from_pretrained("unsloth/gemma-3-1b-it") | |
if torch.cuda.is_available(): | |
model.to("cuda") | |
if torch.backends.mps.is_available(): | |
model.to("mps") | |
def process_history(history): | |
"""Process chat history into the format expected by the model.""" | |
processed_history = [] | |
for user_msg, assistant_msg in history: | |
# Always add user message first, even if empty | |
processed_history.append({"role": "user", "content": [{"type": "text", "text": user_msg or ""}]}) | |
# Always add assistant message, even if empty | |
processed_history.append({"role": "assistant", "content": [{"type": "text", "text": assistant_msg or ""}]}) | |
return processed_history | |
def process_new_user_message(message): | |
"""Process a new user message into the format expected by the model.""" | |
return [{"type": "text", "text": message}] | |
def respond( | |
user_message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
# Format messages according to Gemma's expected chat format | |
messages = [] | |
if system_message: | |
messages.append({"role": "system", "content": system_message}) | |
# Process the conversation history | |
if history: | |
messages.extend(process_history(history)) | |
# Add the new user message | |
messages.append({"role": "user", "content": user_message}) | |
# Apply chat template | |
prompt = tokenizer.apply_chat_template( | |
messages, | |
add_generation_prompt=True, | |
tokenize=False, | |
) | |
inputs = tokenizer(prompt, return_tensors="pt") | |
if torch.cuda.is_available(): | |
inputs = inputs.to("cuda") | |
elif torch.backends.mps.is_available(): | |
inputs = inputs.to("mps") | |
# Set up the streamer | |
streamer = TextIteratorStreamer(tokenizer, timeout=30.0, skip_prompt=True, skip_special_tokens=False) | |
# Run generation in a separate thread | |
generate_kwargs = dict( | |
**inputs, | |
streamer=streamer, | |
max_new_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
top_k=64, # Recommended Gemma-3 setting | |
# do_sample=True, | |
) | |
thread = threading.Thread(target=model.generate, kwargs=generate_kwargs) | |
thread.start() | |
output = "" | |
for token in streamer: | |
output += token | |
# Tags | |
start_tag = "<start_working_out>" | |
sol_start = "<SOLUTION>" | |
sol_end = "</SOLUTION>" | |
thinking = "" | |
final_answer = "" | |
# Extract "Thinking" section: everything after <start_working_out> | |
if start_tag in output: | |
start_idx = output.find(start_tag) + len(start_tag) | |
# If <SOLUTION> is also present, stop "Thinking" at <SOLUTION> | |
if sol_start in output: | |
end_idx = output.find(sol_start) | |
else: | |
end_idx = len(output) | |
thinking = output[start_idx:end_idx].strip() | |
# Extract "Final answer" section: everything after <SOLUTION> | |
if sol_start in output: | |
sol_start_idx = output.find(sol_start) + len(sol_start) | |
# If </SOLUTION> is present, stop at it | |
if sol_end in output: | |
sol_end_idx = output.find(sol_end) | |
final_answer = output[sol_start_idx:sol_end_idx].strip() | |
else: | |
final_answer = output[sol_start_idx:].strip() | |
# Build formatted output | |
formatted_output = "" | |
if thinking: | |
formatted_output += "### Thinking:\n" + thinking + "\n" | |
if final_answer: | |
formatted_output += "\n### Final answer:\n**" + final_answer + "**" | |
# If nothing found yet, just show the raw output (for streaming effect) | |
if not thinking and not final_answer: | |
formatted_output = output | |
yield formatted_output | |
# If </SOLUTION> is found, end the response | |
if sol_end in output: | |
break | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox( | |
value="You are given a problem.\nThink about the problem and provide your working out.\nPlace it between <start_working_out> and <end_working_out>.\nThen, provide your solution between <SOLUTION></SOLUTION>", | |
label="System message" | |
), | |
gr.Slider(minimum=1, maximum=1024, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=1.0, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
examples=[ | |
["Toulouse has twice as many sheep as Charleston. Charleston has 4 times as many sheep as Seattle. How many sheep do Toulouse, Charleston, and Seattle have together if Seattle has 20 sheep?"], | |
["A football team played 22 games. They won 8 more than they lost. How many did they win?"], | |
["Jim spends 2 hours watching TV and then decides to go to bed and reads for half as long. He does this 3 times a week. How many hours does he spend on TV and reading in 4 weeks?"], | |
["Darrell and Allen's ages are in the ratio of 7:11. If their total age now is 162, calculate Allen's age 10 years from now."], | |
["In a neighborhood, the number of rabbits pets is twelve less than the combined number of pet dogs and cats. If there are two cats for every dog, and the number of dogs is 60, how many pets in total are in the neighborhood?"], | |
], | |
cache_examples=False, | |
chatbot=gr.Chatbot( | |
latex_delimiters=[ | |
{"left": "$$", "right": "$$", "display": True}, | |
{"left": "$", "right": "$", "display": False} | |
], | |
), | |
) | |
if __name__ == "__main__": | |
demo.launch() |