Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,275 Bytes
1f7ffd5 f5d659d 1f7ffd5 5d5cf95 1f7ffd5 d88a980 1f7ffd5 d88a980 1f7ffd5 d88a980 1f7ffd5 d88a980 1f7ffd5 d88a980 e9dadf9 d88a980 1f7ffd5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 |
import os
import random
import sys
from typing import Sequence, Mapping, Any, Union
import torch
import gradio as gr
from PIL import Image
import numpy as np
import spaces
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="stable-diffusion-v1-5/stable-diffusion-v1-5", filename="v1-5-pruned-emaonly.ckpt", local_dir="models/checkpoints")
hf_hub_download(repo_id="Lykon/DreamShaper", filename="DreamShaper_3.32_baked_vae_clip_fix_half.safetensors", local_dir="models/checkpoints")
hf_hub_download(repo_id="latentcat/latentcat-controlnet", filename="models/control_v1p_sd15_brightness.safetensors", local_dir="models/controlnet")
hf_hub_download(repo_id="comfyanonymous/ControlNet-v1-1_fp16_safetensors", filename="control_v11f1e_sd15_tile_fp16.safetensors", local_dir="models/controlnet")
hf_hub_download(repo_id="Lykon/dreamshaper-7", filename="vae/diffusion_pytorch_model.fp16.safetensors", local_dir="models")
hf_hub_download(repo_id="stabilityai/sd-vae-ft-mse-original", filename="vae-ft-mse-840000-ema-pruned.safetensors", local_dir="models/vae")
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
"""Returns the value at the given index of a sequence or mapping.
If the object is a sequence (like list or string), returns the value at the given index.
If the object is a mapping (like a dictionary), returns the value at the index-th key.
Some return a dictionary, in these cases, we look for the "results" key
Args:
obj (Union[Sequence, Mapping]): The object to retrieve the value from.
index (int): The index of the value to retrieve.
Returns:
Any: The value at the given index.
Raises:
IndexError: If the index is out of bounds for the object and the object is not a mapping.
"""
try:
return obj[index]
except KeyError:
return obj["result"][index]
def find_path(name: str, path: str = None) -> str:
"""
Recursively looks at parent folders starting from the given path until it finds the given name.
Returns the path as a Path object if found, or None otherwise.
"""
# If no path is given, use the current working directory
if path is None:
path = os.getcwd()
# Check if the current directory contains the name
if name in os.listdir(path):
path_name = os.path.join(path, name)
print(f"{name} found: {path_name}")
return path_name
# Get the parent directory
parent_directory = os.path.dirname(path)
# If the parent directory is the same as the current directory, we've reached the root and stop the search
if parent_directory == path:
return None
# Recursively call the function with the parent directory
return find_path(name, parent_directory)
def add_comfyui_directory_to_sys_path() -> None:
"""
Add 'ComfyUI' to the sys.path
"""
comfyui_path = find_path("ComfyUI")
if comfyui_path is not None and os.path.isdir(comfyui_path):
sys.path.append(comfyui_path)
print(f"'{comfyui_path}' added to sys.path")
def add_extra_model_paths() -> None:
"""
Parse the optional extra_model_paths.yaml file and add the parsed paths to the sys.path.
"""
try:
from main import load_extra_path_config
except ImportError:
print(
"Could not import load_extra_path_config from main.py. Looking in utils.extra_config instead."
)
from utils.extra_config import load_extra_path_config
extra_model_paths = find_path("extra_model_paths.yaml")
if extra_model_paths is not None:
load_extra_path_config(extra_model_paths)
else:
print("Could not find the extra_model_paths config file.")
add_comfyui_directory_to_sys_path()
add_extra_model_paths()
def import_custom_nodes() -> None:
"""Find all custom nodes in the custom_nodes folder and add those node objects to NODE_CLASS_MAPPINGS
This function sets up a new asyncio event loop, initializes the PromptServer,
creates a PromptQueue, and initializes the custom nodes.
"""
import asyncio
import execution
from nodes import init_extra_nodes
import server
# Creating a new event loop and setting it as the default loop
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
# Creating an instance of PromptServer with the loop
server_instance = server.PromptServer(loop)
execution.PromptQueue(server_instance)
# Initializing custom nodes
init_extra_nodes()
from nodes import NODE_CLASS_MAPPINGS
checkpointloadersimple = NODE_CLASS_MAPPINGS["CheckpointLoaderSimple"]()
checkpointloadersimple_4 = checkpointloadersimple.load_checkpoint(
ckpt_name="DreamShaper_3.32_baked_vae_clip_fix_half.safetensors"
)
emptylatentimage = NODE_CLASS_MAPPINGS["EmptyLatentImage"]()
cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
controlnetloader = NODE_CLASS_MAPPINGS["ControlNetLoader"]()
controlnetapplyadvanced = NODE_CLASS_MAPPINGS["ControlNetApplyAdvanced"]()
ksampler = NODE_CLASS_MAPPINGS["KSampler"]()
vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]()
import_custom_nodes()
comfy_qr_by_module_size = NODE_CLASS_MAPPINGS["comfy-qr-by-module-size"]()
tilepreprocessor = NODE_CLASS_MAPPINGS["TilePreprocessor"]()
from comfy import model_management
#Add all the models that load a safetensors file
model_loaders = [checkpointloadersimple_4]
# Check which models are valid and how to best load them
valid_models = [
getattr(loader[0], 'patcher', loader[0])
for loader in model_loaders
if not isinstance(loader[0], dict) and not isinstance(getattr(loader[0], 'patcher', None), dict)
]
model_management.load_models_gpu(valid_models)
@spaces.GPU(duration=20)
def generate_qr_code(prompt: str, url: str):
if "https://" in url:
url = url.replace("https://", "")
if "http://" in url:
url = url.replace("http://", "")
with torch.inference_mode():
emptylatentimage_5 = emptylatentimage.generate(
width=512, height=512, batch_size=1
)
cliptextencode_6 = cliptextencode.encode(
text=prompt,
clip=get_value_at_index(checkpointloadersimple_4, 1),
)
cliptextencode_7 = cliptextencode.encode(
text="ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, extra limbs, body out of frame, blurry, bad anatomy, blurred, watermark, grainy, signature, cut off, draft, closed eyes, text, logo",
clip=get_value_at_index(checkpointloadersimple_4, 1),
)
controlnetloader_10 = controlnetloader.load_controlnet(
control_net_name="models/control_v1p_sd15_brightness.safetensors"
)
controlnetloader_12 = controlnetloader.load_controlnet(
control_net_name="control_v11f1e_sd15_tile_fp16.safetensors"
)
comfy_qr_by_module_size_15 = comfy_qr_by_module_size.generate_qr(
protocol="Https",
text=url,
module_size=12,
max_image_size=512,
fill_hexcolor="#000000",
back_hexcolor="#FFFFFF",
error_correction="Medium",
border=4,
module_drawer="Square",
)
emptylatentimage_17 = emptylatentimage.generate(
width=1024, height=1024, batch_size=1
)
controlnetloader_19 = controlnetloader.load_controlnet(
control_net_name="control_v11f1e_sd15_tile_fp16.safetensors"
)
# saveimage = NODE_CLASS_MAPPINGS["SaveImage"]()
for q in range(1):
controlnetapplyadvanced_11 = controlnetapplyadvanced.apply_controlnet(
strength=0.45,
start_percent=0,
end_percent=1,
positive=get_value_at_index(cliptextencode_6, 0),
negative=get_value_at_index(cliptextencode_7, 0),
control_net=get_value_at_index(controlnetloader_10, 0),
image=get_value_at_index(comfy_qr_by_module_size_15, 0),
vae=get_value_at_index(checkpointloadersimple_4, 2),
)
tilepreprocessor_14 = tilepreprocessor.execute(
pyrUp_iters=3,
resolution=512,
image=get_value_at_index(comfy_qr_by_module_size_15, 0),
)
controlnetapplyadvanced_13 = controlnetapplyadvanced.apply_controlnet(
strength=0.45,
start_percent=0,
end_percent=1,
positive=get_value_at_index(controlnetapplyadvanced_11, 0),
negative=get_value_at_index(controlnetapplyadvanced_11, 1),
control_net=get_value_at_index(controlnetloader_12, 0),
image=get_value_at_index(tilepreprocessor_14, 0),
vae=get_value_at_index(checkpointloadersimple_4, 2),
)
ksampler_3 = ksampler.sample(
seed=random.randint(1, 2**64),
steps=20,
cfg=7,
sampler_name="dpmpp_2m",
scheduler="karras",
denoise=1,
model=get_value_at_index(checkpointloadersimple_4, 0),
positive=get_value_at_index(controlnetapplyadvanced_13, 0),
negative=get_value_at_index(controlnetapplyadvanced_13, 1),
latent_image=get_value_at_index(emptylatentimage_5, 0),
)
vaedecode_8 = vaedecode.decode(
samples=get_value_at_index(ksampler_3, 0),
vae=get_value_at_index(checkpointloadersimple_4, 2),
)
# saveimage_9 = saveimage.save_images(
# filename_prefix="qr-new", images=get_value_at_index(vaedecode_8, 0)
# )
controlnetapplyadvanced_20 = controlnetapplyadvanced.apply_controlnet(
strength=1,
start_percent=0,
end_percent=1,
positive=get_value_at_index(cliptextencode_6, 0),
negative=get_value_at_index(cliptextencode_7, 0),
control_net=get_value_at_index(controlnetloader_19, 0),
image=get_value_at_index(vaedecode_8, 0),
vae=get_value_at_index(checkpointloadersimple_4, 2),
)
ksampler_18 = ksampler.sample(
seed=random.randint(1, 2**64),
steps=20,
cfg=7,
sampler_name="dpmpp_2m",
scheduler="karras",
denoise=1,
model=get_value_at_index(checkpointloadersimple_4, 0),
positive=get_value_at_index(controlnetapplyadvanced_20, 0),
negative=get_value_at_index(controlnetapplyadvanced_20, 1),
latent_image=get_value_at_index(emptylatentimage_17, 0),
)
vaedecode_21 = vaedecode.decode(
samples=get_value_at_index(ksampler_18, 0),
vae=get_value_at_index(checkpointloadersimple_4, 2),
)
# saveimage_22 = saveimage.save_images(
# filename_prefix="qr-new-improved",
# images=get_value_at_index(vaedecode_21, 0),
# )
# Convert torch tensor to PIL Image
image_tensor = get_value_at_index(vaedecode_21, 0)
# Convert from [0,1] to [0,255] range and to uint8
image_np = (image_tensor.cpu().numpy() * 255).astype(np.uint8)
# Remove batch dimension and convert to PIL Image
image_np = image_np[0] # Shape will be (1024, 1024, 3)
pil_image = Image.fromarray(image_np)
return pil_image
if __name__ == "__main__":
# Start your Gradio app
with gr.Blocks() as app:
# Add a title and description
gr.Markdown("# QR Code Art Generator")
gr.Markdown("""
This is an AI-powered QR code generator that creates artistic QR codes using Stable Diffusion 1.5 and ControlNet models.
The application uses a custom ComfyUI workflow to generate QR codes.
### Tips:
- Use detailed prompts for better results
- Include style keywords like 'photorealistic', 'detailed', '8k'
- Try the examples below for inspiration
""")
with gr.Row():
with gr.Column():
# Add inputs
prompt_input = gr.Textbox(
label="Prompt",
placeholder="Describe the image you want to generate (check examples below for inspiration)",
value="Enter your prompt here... For example: 'a beautiful sunset over mountains, photorealistic, detailed landscape'"
)
url_input = gr.Textbox(
label="URL for QR Code",
placeholder="Enter the URL you want to convert into a QR code (e.g., https://example.com)",
value="Enter your URL here... For example: https://github.com"
)
# The generate button
generate_btn = gr.Button("Generate")
with gr.Column():
# The output image
output_image = gr.Image(label="Generated QR Code Art")
# When clicking the button, it will trigger the main function
generate_btn.click(
fn=generate_qr_code,
inputs=[prompt_input, url_input],
outputs=[output_image]
)
# Add examples
examples = [
[
"some clothes spread on ropes, realistic, great details, out in the open air sunny day realistic, great details,absence of people, Detailed and Intricate, CGI, Photoshoot,rim light, 8k, 16k, ultra detail",
"https://www.google.com"
],
[
"some cards on poker tale, realistic, great details, realistic, great details,absence of people, Detailed and Intricate, CGI, Photoshoot,rim light, 8k, 16k, ultra detail",
"https://store.steampowered.com"
],
[
"a beautiful sunset over mountains, photorealistic, detailed landscape, golden hour, dramatic lighting, 8k, ultra detailed",
"https://github.com"
],
[
"underwater scene with coral reef and tropical fish, photorealistic, detailed, crystal clear water, sunlight rays, 8k, ultra detailed",
"https://twitter.com"
],
[
"futuristic cityscape with flying cars and neon lights, cyberpunk style, detailed architecture, night scene, 8k, ultra detailed",
"https://linkedin.com"
],
[
"vintage camera on wooden table, photorealistic, detailed textures, soft lighting, bokeh background, 8k, ultra detailed",
"https://instagram.com"
]
]
gr.Examples(
examples=examples,
inputs=[prompt_input, url_input],
outputs=[output_image],
fn=generate_qr_code,
cache_examples=True
)
app.launch(share=False, mcp_server=True)
|