Spaces:
Paused
Paused
Commit
路
478a673
1
Parent(s):
d1dd306
dead lift exercise
Browse files- .gitignore +2 -1
- app.py +45 -1
- src/exercises/dead_lift.py +316 -0
- tasks.py +2 -0
.gitignore
CHANGED
@@ -175,4 +175,5 @@ cython_debug/
|
|
175 |
|
176 |
static/
|
177 |
*.mp4
|
178 |
-
*.MOV
|
|
|
|
175 |
|
176 |
static/
|
177 |
*.mp4
|
178 |
+
*.MOV
|
179 |
+
*.json
|
app.py
CHANGED
@@ -14,6 +14,7 @@ from fastapi.responses import JSONResponse
|
|
14 |
from config import AI_API_TOKEN
|
15 |
import logging
|
16 |
import json
|
|
|
17 |
|
18 |
|
19 |
logging.basicConfig(level=logging.INFO)
|
@@ -73,7 +74,7 @@ async def upload(background_tasks: BackgroundTasks,
|
|
73 |
token: str = Header(...),
|
74 |
player_data: str = Body(...),
|
75 |
repetitions: int|str = Body(...),
|
76 |
-
exercise_id: str = Body(...)
|
77 |
):
|
78 |
|
79 |
|
@@ -106,3 +107,46 @@ async def upload(background_tasks: BackgroundTasks,
|
|
106 |
return JSONResponse(content={"message": "Video uploaded successfully",
|
107 |
"status": 200})
|
108 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
from config import AI_API_TOKEN
|
15 |
import logging
|
16 |
import json
|
17 |
+
from src.exercises.dead_lift import analyze_dead_lift
|
18 |
|
19 |
|
20 |
logging.basicConfig(level=logging.INFO)
|
|
|
74 |
token: str = Header(...),
|
75 |
player_data: str = Body(...),
|
76 |
repetitions: int|str = Body(...),
|
77 |
+
exercise_id: str = Body(...),
|
78 |
):
|
79 |
|
80 |
|
|
|
107 |
return JSONResponse(content={"message": "Video uploaded successfully",
|
108 |
"status": 200})
|
109 |
|
110 |
+
|
111 |
+
|
112 |
+
@app.post("/exercise/dead_lift")
|
113 |
+
async def upload(background_tasks: BackgroundTasks,
|
114 |
+
file: UploadFile = File(...),
|
115 |
+
token: str = Header(...),
|
116 |
+
player_data: str = Body(...),
|
117 |
+
repetitions: int|str = Body(...),
|
118 |
+
exercise_id: str = Body(...),
|
119 |
+
weight: int|str = Body(...)
|
120 |
+
):
|
121 |
+
|
122 |
+
player_data = json.loads(player_data)
|
123 |
+
|
124 |
+
if token != AI_API_TOKEN:
|
125 |
+
|
126 |
+
raise HTTPException(status_code=401, detail="Unauthorized")
|
127 |
+
|
128 |
+
logger.info("reading contents")
|
129 |
+
contents = await file.read()
|
130 |
+
|
131 |
+
# Save the file to the local directory
|
132 |
+
logger.info("saving file")
|
133 |
+
with open(file.filename, "wb") as f:
|
134 |
+
f.write(contents)
|
135 |
+
|
136 |
+
logger.info(f"file saved {file.filename}")
|
137 |
+
|
138 |
+
|
139 |
+
|
140 |
+
background_tasks.add_task(analyze_dead_lift,
|
141 |
+
file.filename,
|
142 |
+
repetitions,
|
143 |
+
weight,
|
144 |
+
player_data["height"],
|
145 |
+
vitpose,
|
146 |
+
player_data["id"],
|
147 |
+
exercise_id)
|
148 |
+
|
149 |
+
return JSONResponse(content={"message": "Video uploaded successfully",
|
150 |
+
"status": 200})
|
151 |
+
|
152 |
+
|
src/exercises/dead_lift.py
ADDED
@@ -0,0 +1,316 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
from scipy.optimize import linear_sum_assignment
|
4 |
+
import requests
|
5 |
+
import json
|
6 |
+
from fastapi.responses import JSONResponse
|
7 |
+
from config import API_URL, API_KEY
|
8 |
+
import logging
|
9 |
+
|
10 |
+
logger = logging.getLogger(__name__)
|
11 |
+
|
12 |
+
class RepCounter:
|
13 |
+
def __init__(self, fps, height_cm, mass_kg=0, target_reps=None):
|
14 |
+
self.count = 0
|
15 |
+
self.last_state = None
|
16 |
+
self.cooldown_frames = 15
|
17 |
+
self.cooldown = 0
|
18 |
+
self.rep_start_frame = None
|
19 |
+
self.start_wrist_y = None
|
20 |
+
self.rep_data = []
|
21 |
+
self.power_data = []
|
22 |
+
self.fps = fps
|
23 |
+
self.cm_per_pixel = None
|
24 |
+
self.real_distance_cm = height_cm * 0.2735
|
25 |
+
self.calibration_done = False
|
26 |
+
self.mass_kg = mass_kg
|
27 |
+
self.gravity = 9.81
|
28 |
+
self.target_reps = int(target_reps)
|
29 |
+
self.target_reached = False
|
30 |
+
self.final_speed = None
|
31 |
+
self.final_power = None
|
32 |
+
self.SKELETON = [
|
33 |
+
(5, 6), (5, 7), (7, 9), (6, 8), (8, 10),
|
34 |
+
(9, 10), (11, 12), (5, 11), (6, 12),
|
35 |
+
(11, 13), (13, 15), (12, 14), (14, 16), (13, 14)
|
36 |
+
]
|
37 |
+
|
38 |
+
def update(self, wrist_y, knee_y, current_frame):
|
39 |
+
if self.target_reached or self.cooldown > 0:
|
40 |
+
self.cooldown = max(0, self.cooldown - 1)
|
41 |
+
return
|
42 |
+
|
43 |
+
current_state = 'above' if wrist_y < knee_y else 'below'
|
44 |
+
|
45 |
+
if self.last_state != current_state:
|
46 |
+
if current_state == 'below':
|
47 |
+
self.rep_start_frame = current_frame
|
48 |
+
self.start_wrist_y = wrist_y
|
49 |
+
elif current_state == 'above' and self.last_state == 'below':
|
50 |
+
if self.rep_start_frame is not None and self.cm_per_pixel is not None:
|
51 |
+
end_frame = current_frame
|
52 |
+
duration = (end_frame - self.rep_start_frame) / self.fps
|
53 |
+
distance_pixels = self.start_wrist_y - wrist_y
|
54 |
+
distance_cm = distance_pixels * self.cm_per_pixel
|
55 |
+
|
56 |
+
if duration > 0:
|
57 |
+
speed_cmps = abs(distance_cm) / duration
|
58 |
+
self.rep_data.append(speed_cmps)
|
59 |
+
|
60 |
+
if self.mass_kg > 0:
|
61 |
+
speed_mps = speed_cmps / 100
|
62 |
+
force = self.mass_kg * self.gravity
|
63 |
+
power = force * speed_mps
|
64 |
+
self.power_data.append(power)
|
65 |
+
|
66 |
+
self.count += 1
|
67 |
+
if self.target_reps and self.count >= self.target_reps:
|
68 |
+
self.count = self.target_reps
|
69 |
+
self.target_reached = True
|
70 |
+
self.final_speed = np.mean(self.rep_data) if self.rep_data else 0
|
71 |
+
self.final_power = np.mean(self.power_data) if self.power_data else 0
|
72 |
+
|
73 |
+
self.cooldown = self.cooldown_frames
|
74 |
+
|
75 |
+
self.last_state = current_state
|
76 |
+
|
77 |
+
# CentroidTracker class
|
78 |
+
class CentroidTracker:
|
79 |
+
def __init__(self, max_disappeared=50, max_distance=100):
|
80 |
+
self.next_id = 0
|
81 |
+
self.objects = {}
|
82 |
+
self.max_disappeared = max_disappeared
|
83 |
+
self.max_distance = max_distance
|
84 |
+
|
85 |
+
def _update_missing(self):
|
86 |
+
to_delete = []
|
87 |
+
for obj_id in list(self.objects.keys()):
|
88 |
+
self.objects[obj_id]["missed"] += 1
|
89 |
+
if self.objects[obj_id]["missed"] > self.max_disappeared:
|
90 |
+
to_delete.append(obj_id)
|
91 |
+
for obj_id in to_delete:
|
92 |
+
del self.objects[obj_id]
|
93 |
+
|
94 |
+
def update(self, detections):
|
95 |
+
if len(detections) == 0:
|
96 |
+
self._update_missing()
|
97 |
+
return []
|
98 |
+
|
99 |
+
centroids = np.array([[(x1 + x2) / 2, (y1 + y2) / 2] for x1, y1, x2, y2 in detections])
|
100 |
+
|
101 |
+
if len(self.objects) == 0:
|
102 |
+
return self._register_new(centroids)
|
103 |
+
|
104 |
+
return self._match_existing(centroids, detections)
|
105 |
+
|
106 |
+
def _register_new(self, centroids):
|
107 |
+
new_ids = []
|
108 |
+
for centroid in centroids:
|
109 |
+
self.objects[self.next_id] = {"centroid": centroid, "missed": 0}
|
110 |
+
new_ids.append(self.next_id)
|
111 |
+
self.next_id += 1
|
112 |
+
return new_ids
|
113 |
+
|
114 |
+
def _match_existing(self, centroids, detections):
|
115 |
+
existing_ids = list(self.objects.keys())
|
116 |
+
existing_centroids = [self.objects[obj_id]["centroid"] for obj_id in existing_ids]
|
117 |
+
|
118 |
+
cost = np.linalg.norm(np.array(existing_centroids)[:, np.newaxis] - centroids, axis=2)
|
119 |
+
row_ind, col_ind = linear_sum_assignment(cost)
|
120 |
+
|
121 |
+
used_rows = set()
|
122 |
+
used_cols = set()
|
123 |
+
matches = {}
|
124 |
+
|
125 |
+
for (row, col) in zip(row_ind, col_ind):
|
126 |
+
if cost[row, col] <= self.max_distance:
|
127 |
+
obj_id = existing_ids[row]
|
128 |
+
matches[obj_id] = centroids[col]
|
129 |
+
used_rows.add(row)
|
130 |
+
used_cols.add(col)
|
131 |
+
|
132 |
+
for obj_id in existing_ids:
|
133 |
+
if obj_id not in matches:
|
134 |
+
self.objects[obj_id]["missed"] += 1
|
135 |
+
if self.objects[obj_id]["missed"] > self.max_disappeared:
|
136 |
+
del self.objects[obj_id]
|
137 |
+
|
138 |
+
new_ids = []
|
139 |
+
for col in range(len(centroids)):
|
140 |
+
if col not in used_cols:
|
141 |
+
self.objects[self.next_id] = {"centroid": centroids[col], "missed": 0}
|
142 |
+
new_ids.append(self.next_id)
|
143 |
+
self.next_id += 1
|
144 |
+
|
145 |
+
for obj_id, centroid in matches.items():
|
146 |
+
self.objects[obj_id]["centroid"] = centroid
|
147 |
+
self.objects[obj_id]["missed"] = 0
|
148 |
+
|
149 |
+
all_ids = []
|
150 |
+
for detection in detections:
|
151 |
+
centroid = np.array([(detection[0] + detection[2]) / 2, (detection[1] + detection[3]) / 2])
|
152 |
+
min_id = None
|
153 |
+
min_dist = float('inf')
|
154 |
+
for obj_id, data in self.objects.items():
|
155 |
+
dist = np.linalg.norm(centroid - data["centroid"])
|
156 |
+
if dist < min_dist and dist <= self.max_distance:
|
157 |
+
min_dist = dist
|
158 |
+
min_id = obj_id
|
159 |
+
if min_id is not None:
|
160 |
+
all_ids.append(min_id)
|
161 |
+
self.objects[min_id]["centroid"] = centroid
|
162 |
+
else:
|
163 |
+
all_ids.append(self.next_id)
|
164 |
+
self.objects[self.next_id] = {"centroid": centroid, "missed": 0}
|
165 |
+
self.next_id += 1
|
166 |
+
|
167 |
+
return all_ids
|
168 |
+
|
169 |
+
# Funci贸n de procesamiento optimizada
|
170 |
+
def process_frame_for_counting(frame, tracker, rep_counter, frame_number,vitpose):
|
171 |
+
|
172 |
+
pose_results = vitpose.pipeline(frame)
|
173 |
+
|
174 |
+
|
175 |
+
keypoints = pose_results.keypoints_xy.float().cpu().numpy()[0]
|
176 |
+
scores = pose_results.scores.float().cpu().numpy()[0]
|
177 |
+
valid_points = {}
|
178 |
+
wrist_midpoint = None
|
179 |
+
knee_line_y = None
|
180 |
+
|
181 |
+
|
182 |
+
print(keypoints)
|
183 |
+
print(scores)
|
184 |
+
|
185 |
+
# Procesar puntos clave
|
186 |
+
for i, (kp, conf) in enumerate(zip(keypoints, scores)):
|
187 |
+
if conf > 0.3 and 5 <= i <= 16:
|
188 |
+
x, y = map(int, kp[:2])
|
189 |
+
valid_points[i] = (x, y)
|
190 |
+
|
191 |
+
# Calibraci贸n usando keypoints de rodilla (14) y pie (16)
|
192 |
+
if not rep_counter.calibration_done and 14 in valid_points and 16 in valid_points:
|
193 |
+
knee = valid_points[14]
|
194 |
+
ankle = valid_points[16]
|
195 |
+
pixel_distance = np.sqrt((knee[0] - ankle[0])**2 + (knee[1] - ankle[1])**2)
|
196 |
+
if pixel_distance > 0:
|
197 |
+
rep_counter.cm_per_pixel = rep_counter.real_distance_cm / pixel_distance
|
198 |
+
rep_counter.calibration_done = True
|
199 |
+
|
200 |
+
# Calcular puntos de referencia para conteo
|
201 |
+
if 9 in valid_points and 10 in valid_points:
|
202 |
+
wrist_midpoint = (
|
203 |
+
(valid_points[9][0] + valid_points[10][0]) // 2,
|
204 |
+
(valid_points[9][1] + valid_points[10][1]) // 2
|
205 |
+
)
|
206 |
+
if 13 in valid_points and 14 in valid_points:
|
207 |
+
pt1 = np.array(valid_points[13])
|
208 |
+
pt2 = np.array(valid_points[14])
|
209 |
+
direction = pt2 - pt1
|
210 |
+
extension = 0.2
|
211 |
+
new_pt1 = pt1 - direction * extension
|
212 |
+
new_pt2 = pt2 + direction * extension
|
213 |
+
knee_line_y = (new_pt1[1] + new_pt2[1]) // 2
|
214 |
+
|
215 |
+
# Actualizar contador
|
216 |
+
if wrist_midpoint and knee_line_y:
|
217 |
+
rep_counter.update(wrist_midpoint[1], knee_line_y, frame_number)
|
218 |
+
|
219 |
+
|
220 |
+
|
221 |
+
# Funci贸n principal de Gradio
|
222 |
+
def analyze_dead_lift(input_video, reps, weight, height,vitpose,player_id,exercise_id):
|
223 |
+
cap = cv2.VideoCapture(input_video)
|
224 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
225 |
+
|
226 |
+
|
227 |
+
rep_counter = RepCounter(fps, int(height), int(weight), int(reps))
|
228 |
+
tracker = CentroidTracker(max_distance=150)
|
229 |
+
|
230 |
+
frame_number = 0
|
231 |
+
while cap.isOpened():
|
232 |
+
ret, frame = cap.read()
|
233 |
+
if not ret:
|
234 |
+
break
|
235 |
+
|
236 |
+
process_frame_for_counting(frame, tracker, rep_counter, frame_number,vitpose)
|
237 |
+
frame_number += 1
|
238 |
+
|
239 |
+
cap.release()
|
240 |
+
|
241 |
+
# Preparar payload para webhook
|
242 |
+
if rep_counter.mass_kg > 0:
|
243 |
+
power_data = rep_counter.power_data
|
244 |
+
else:
|
245 |
+
# Si no hay masa, usar ceros para potencia
|
246 |
+
power_data = [0] * len(rep_counter.rep_data) if rep_counter.rep_data else []
|
247 |
+
|
248 |
+
# Asegurar que tenemos datos para enviar
|
249 |
+
if rep_counter.rep_data:
|
250 |
+
payload = {"repetition_data": [
|
251 |
+
{"repetition": i, "velocidad": round(s,1), "potencia": round(p,1)}
|
252 |
+
for i, (s, p) in enumerate(zip(rep_counter.rep_data, power_data), start=1)
|
253 |
+
]}
|
254 |
+
else:
|
255 |
+
# En caso de no detectar repeticiones
|
256 |
+
payload = {"repetition_data": []}
|
257 |
+
|
258 |
+
|
259 |
+
send_results_api(payload, player_id, exercise_id, input_video)
|
260 |
+
|
261 |
+
|
262 |
+
def send_results_api(results_dict: dict,
|
263 |
+
player_id: str,
|
264 |
+
exercise_id: str,
|
265 |
+
video_path: str) -> JSONResponse:
|
266 |
+
"""
|
267 |
+
Send video analysis results to the API webhook endpoint.
|
268 |
+
|
269 |
+
This function uploads the analyzed video file along with the computed metrics
|
270 |
+
to the API's webhook endpoint for processing and storage.
|
271 |
+
|
272 |
+
Args:
|
273 |
+
results_dict (dict): Dictionary containing analysis results including:
|
274 |
+
- video_analysis: Information about the processed video
|
275 |
+
- repetition_data: List of metrics for each jump repetition
|
276 |
+
player_id (str): Unique identifier for the player
|
277 |
+
exercise_id (str): Unique identifier for the exercise
|
278 |
+
video_path (str): Path to the video file to upload
|
279 |
+
|
280 |
+
Returns:
|
281 |
+
JSONResponse: HTTP response from the API endpoint
|
282 |
+
|
283 |
+
Raises:
|
284 |
+
FileNotFoundError: If the video file doesn't exist
|
285 |
+
requests.RequestException: If the API request fails
|
286 |
+
json.JSONEncodeError: If results_dict cannot be serialized to JSON
|
287 |
+
"""
|
288 |
+
url = API_URL + "/exercises/webhooks/video-processed-results"
|
289 |
+
logger.info(f"Sending video results to {url}")
|
290 |
+
|
291 |
+
# Open the video file
|
292 |
+
with open(video_path, 'rb') as video_file:
|
293 |
+
# Prepare the files dictionary for file upload
|
294 |
+
files = {
|
295 |
+
'file': (video_path.split('/')[-1], video_file, 'video/mp4')
|
296 |
+
}
|
297 |
+
|
298 |
+
# Prepare the form data
|
299 |
+
data = {
|
300 |
+
'player_id': player_id,
|
301 |
+
'exercise_id': exercise_id,
|
302 |
+
'results': json.dumps(results_dict) # Convert dict to JSON string
|
303 |
+
}
|
304 |
+
|
305 |
+
# Send the request with both files and data
|
306 |
+
response = requests.post(
|
307 |
+
url,
|
308 |
+
headers={"token": API_KEY},
|
309 |
+
files=files,
|
310 |
+
data=data,
|
311 |
+
stream=True
|
312 |
+
)
|
313 |
+
|
314 |
+
logger.info(f"Response: {response.status_code}")
|
315 |
+
logger.info(f"Response: {response.text}")
|
316 |
+
return response
|
tasks.py
CHANGED
@@ -97,6 +97,8 @@ class FramePosition:
|
|
97 |
y: int
|
98 |
width: int
|
99 |
height: int
|
|
|
|
|
100 |
def process_video(file_name: str,vitpose: VitPose,user_id: str,player_id: str):
|
101 |
"""
|
102 |
Process a video file using VitPose for pose estimation and send results to webhook.
|
|
|
97 |
y: int
|
98 |
width: int
|
99 |
height: int
|
100 |
+
|
101 |
+
|
102 |
def process_video(file_name: str,vitpose: VitPose,user_id: str,player_id: str):
|
103 |
"""
|
104 |
Process a video file using VitPose for pose estimation and send results to webhook.
|