File size: 27,584 Bytes
091117d
 
 
fba6e1e
091117d
5093bc2
d5bf444
 
 
 
 
 
5093bc2
 
fba6e1e
5093bc2
fba6e1e
 
 
 
 
 
2d729d2
fba6e1e
 
 
2d729d2
fba6e1e
825522e
091117d
 
 
0936f88
fba6e1e
0936f88
fba6e1e
0936f88
fba6e1e
091117d
 
 
5093bc2
fba6e1e
2a37377
fba6e1e
 
 
 
 
2a37377
 
5093bc2
d5bf444
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
from vitpose import VitPose
import requests
import os
from config import API_URL,API_KEY
from fastapi import UploadFile
import logging
import cv2
import numpy as np

import time
import json

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def process_video(file_name: str,vitpose: VitPose,user_id: str,player_id: str):
    
    video_path = file_name

    contents = open(video_path, "rb").read()

    with open(video_path, "wb") as f:
        f.write(contents)
    
    logger.info(f"file saved {video_path}")
   
    logger.info(f"starting task {video_path}")
    
    new_file_name = os.path.join("static", video_path)
    logger.info(f"new file name {new_file_name}")
    
    vitpose.output_video_path = new_file_name
    annotated_frames = vitpose.run(video_path)
    
    vitpose.frames_to_video(annotated_frames)
    
    logger.info(f"Video processed {video_path}")
    
    with open(new_file_name, "rb") as f:
        contents = f.read()
        
    url = API_URL+ "/excercises/webhooks/video-processed"
    logger.info(f"Sending video to {url}")
    files = {"file": (video_path, contents, "video/mp4")}
    logger.info(f"video_path: {video_path}")
    response = requests.post(url, files=files, 
                             data={"user_id":user_id,"typeMessage":"video_processed","file_name":video_path,
                                   "player_id":player_id}, 
                             stream=True,
                             headers={"token":API_KEY})
    logger.info(f"Response: {response.status_code}")
    logger.info(f"Response: {response.text}")
    logger.info(f"Video sent to {url}")
    

def process_salto_alto(file_name: str, vitpose: VitPose, player_data: dict, repetitions: int, exercise_id: str):
    """
    Process a high jump exercise video using VitPose for pose estimation.
    
    Args:
        file_name: Path to the input video
        vitpose: VitPose instance for pose estimation
        player_data: Dictionary containing player information
        repetitions: Expected number of repetitions
        exercise_id: ID of the exercise
    """
    # Use the provided VitPose instance
    model = vitpose.pipeline
    
    # Get player parameters from player_data or use defaults
    reference_height = player_data.get('height', 1.68)  # Altura aproximada de la persona en metros
    body_mass_kg = player_data.get('weight', 64)  # Peso corporal en kg
    
    # Generate output paths
    output_video = file_name.replace('.mp4', '_analyzed.mp4')
    output_json = output_video.replace('.mp4', '.json')
    
    # Process the video and get the jump metrics
    results_dict = analyze_jump_video(
        model=model,
        input_video=file_name,
        output_video=output_video,
        reference_height=reference_height,
        body_mass_kg=body_mass_kg
    )
    
    # Save results to JSON
    with open(output_json, 'w') as f:
        json.dumps(results_dict, indent=4)
    
    # Print summary
    print("\nResultados finales:")
    print(f"Salto Relativo máximo: {results_dict['jump_metrics']['max_relative_jump']:.2f}m")
    print(f"Salto Alto máximo: {results_dict['jump_metrics']['max_high_jump']:.2f}m")
    print(f"Potencia Sayer (estimada): {results_dict['jump_metrics']['peak_power_sayer']:.2f} W")
    
    # Return results dictionary
    return {
        "output_video": output_video,
        "output_json": output_json,
        "metrics": results_dict
    }


def analyze_jump_video(model, input_video, output_video, reference_height=1.68, body_mass_kg=64):
    """
    Analyze a jump video to calculate various jump metrics.
    
    Args:
        model: VitPose model instance
        input_video: Path to input video
        output_video: Path to output video
        reference_height: Height of the person in meters
        body_mass_kg: Weight of the person in kg
        
    Returns:
        Dictionary containing jump metrics and video analysis data
    """
    # Configuration parameters
    JUMP_THRESHOLD_PERCENT = 0.05  # Porcentaje de cambio en la altura del tobillo para detectar el inicio del salto
    SMOOTHING_WINDOW = 5  # Ventana para suavizar la altura de los tobillos
    HORIZONTAL_OFFSET_FACTOR = 0.75  # Factor para ubicar el cuadro entre el hombro y el borde
    VELOCITY_WINDOW = 3  # Número de frames para calcular la velocidad
    METRICS_BELOW_FEET_OFFSET = 20  # Offset en píxeles para colocar los cuadros debajo de los pies
    
    # Color palette
    BLUE = (255, 0, 0)
    GREEN = (0, 255, 0)
    YELLOW = (0, 255, 255)
    WHITE = (255, 255, 255)
    BLACK = (0, 0, 0)
    GRAY = (128, 128, 128)
    LIGHT_GRAY = (200, 200, 200)
    
    repetition_data = []
    
    # Open the video
    cap = cv2.VideoCapture(input_video)
    if not cap.isOpened():
        print("Error al abrir el video")
        return {}
    
    # Get first frame to calibrate and get initial shoulder positions
    ret, frame = cap.read()
    if not ret:
        print("Error al leer el video")
        return {}
    
    # Initialize calibration variables
    PX_PER_METER = None
    initial_person_height_px = None
    initial_left_shoulder_x = None
    initial_right_shoulder_x = None
    
    # Process first frame to calibrate
    results_first_frame = model(frame)  # Detect pose in first frame
    if results_first_frame and results_first_frame[0].keypoints and len(results_first_frame[0].keypoints.xy[0]) > 0:
        kpts_first = results_first_frame[0].keypoints.xy[0].cpu().numpy()
        if kpts_first[0][1] > 0 and kpts_first[15][1] > 0 and kpts_first[16][1] > 0:  # Nose and ankles
            initial_person_height_px = min(kpts_first[15][1], kpts_first[16][1]) - kpts_first[0][1]
            PX_PER_METER = initial_person_height_px / reference_height
            print(f"Escala calculada: {PX_PER_METER:.2f} px/m")
        if kpts_first[5][0] > 0 and kpts_first[6][0] > 0:  # Left (5) and right (6) shoulders
            initial_left_shoulder_x = int(kpts_first[5][0])
            initial_right_shoulder_x = int(kpts_first[6][0])
    
    if PX_PER_METER is None or initial_left_shoulder_x is None or initial_right_shoulder_x is None:
        print("No se pudo calibrar la escala o detectar los hombros en el primer frame.")
        cap.release()
        return {}
    
    # Reset video for processing
    cap.release()
    cap = cv2.VideoCapture(input_video)
    fps = cap.get(cv2.CAP_PROP_FPS)
    width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    out = cv2.VideoWriter(output_video, cv2.VideoWriter_fourcc(*'mp4v'), fps, (width, height))
    
    # Variables for metrics and visualization
    ground_level = None
    takeoff_head_y = None
    max_jump_height = 0  # Maximum relative jump
    max_head_height_px = None  # Maximum head height in pixels (lowest in y coordinates)
    jump_started = False
    head_y_history = []
    ankle_y_history = []
    last_detected_ankles_y = None
    head_y_buffer = []
    velocity_vertical = 0.0
    peak_power_sayer = 0.0  # Initialize Sayer power
    person_detected = False  # Flag to indicate if person was detected in any frame
    current_power = 0.0
    repetition_count = 0
    jump_in_air = False
    
    # Process each frame
    while cap.isOpened():
        ret, frame = cap.read()
        if not ret:
            break
        
        annotated_frame = frame.copy()
        results = model(annotated_frame)
        
        if results and results[0].keypoints and len(results[0].keypoints.xy[0]) > 0:
            person_detected = True
            kpts = results[0].keypoints.xy[0].cpu().numpy()
            nose = kpts[0]
            ankles = [kpts[15], kpts[16]]
            left_shoulder = kpts[5]
            right_shoulder = kpts[6]
            
            if nose[1] > 0 and all(a[1] > 0 for a in ankles) and left_shoulder[0] > 0 and right_shoulder[0] > 0:
                current_ankle_y = min(a[1] for a in ankles)
                last_detected_ankles_y = current_ankle_y  # Save current ankle position
                current_head_y = nose[1]
                current_left_shoulder_x = int(left_shoulder[0])
                current_right_shoulder_x = int(right_shoulder[0])
                
                # Smooth ankle and head positions
                ankle_y_history.append(current_ankle_y)
                if len(ankle_y_history) > SMOOTHING_WINDOW:
                    ankle_y_history.pop(0)
                smoothed_ankle_y = np.mean(ankle_y_history)
                
                head_y_history.append(current_head_y)
                if len(head_y_history) > SMOOTHING_WINDOW:
                    head_y_history.pop(0)
                smoothed_head_y = np.mean(head_y_history)
                
                # Calculate vertical velocity (using head position)
                head_y_buffer.append(smoothed_head_y)
                if len(head_y_buffer) > VELOCITY_WINDOW:
                    head_y_buffer.pop(0)
                    if PX_PER_METER is not None and fps > 0:
                        delta_y_pixels = head_y_buffer[0] - head_y_buffer[-1]
                        delta_y_meters = delta_y_pixels / PX_PER_METER
                        delta_t = VELOCITY_WINDOW / fps
                        velocity_vertical = delta_y_meters / delta_t
                
                # Set ground level in first frame where ankles are detected
                if ground_level is None:
                    ground_level = smoothed_ankle_y
                    takeoff_head_y = smoothed_head_y
                
                relative_ankle_change = (ground_level - smoothed_ankle_y) / ground_level if ground_level > 0 else 0
                
                # Detect jump start
                if not jump_started and relative_ankle_change > JUMP_THRESHOLD_PERCENT:
                    jump_started = True
                    takeoff_head_y = smoothed_head_y
                    max_jump_height = 0
                    max_head_height_px = smoothed_head_y
                
                # Detect jump end
                if jump_started and relative_ankle_change <= JUMP_THRESHOLD_PERCENT:
                    # Add to repetition data
                    salto_alto = calculate_absolute_jump_height(reference_height, max_jump_height)
                    repetition_data.append({
                        "repetition": repetition_count + 1,
                        "relative_jump_m": round(max_jump_height, 3),
                        "absolute_jump_m": round(salto_alto, 3),
                        "peak_power_watts": round(current_power, 1)
                    })
                    repetition_count += 1
                    jump_started = False
                
                # Update jump metrics while in air
                if jump_started:
                    relative_jump = (takeoff_head_y - smoothed_head_y) / PX_PER_METER
                    if relative_jump > max_jump_height:
                        max_jump_height = relative_jump
                    if smoothed_head_y < max_head_height_px:
                        max_head_height_px = smoothed_head_y
                    if relative_jump:
                        current_power = calculate_peak_power_sayer(relative_jump, body_mass_kg)
                        if current_power > peak_power_sayer:
                            peak_power_sayer = current_power
        else:
            last_detected_ankles_y = None  # Reset position if ankles not detected
            velocity_vertical = 0.0  # Reset velocity if no reliable detection
        
        # Calculate absolute jump height
        salto_alto = calculate_absolute_jump_height(reference_height, max_jump_height)
        
        # Draw floating metric boxes
        annotated_frame = draw_metrics_overlay(
            frame=annotated_frame,
            max_jump_height=max_jump_height,
            salto_alto=salto_alto,
            velocity_vertical=velocity_vertical,
            peak_power_sayer=peak_power_sayer,
            repetition_count=repetition_count,
            last_detected_ankles_y=last_detected_ankles_y,
            initial_left_shoulder_x=initial_left_shoulder_x,
            initial_right_shoulder_x=initial_right_shoulder_x,
            width=width,
            height=height,
            colors={
                "blue": BLUE,
                "green": GREEN,
                "yellow": YELLOW,
                "white": WHITE,
                "black": BLACK,
                "gray": GRAY,
                "light_gray": LIGHT_GRAY
            },
            metrics_below_feet_offset=METRICS_BELOW_FEET_OFFSET,
            horizontal_offset_factor=HORIZONTAL_OFFSET_FACTOR
        )
        
        out.write(annotated_frame)
    
    # Prepare results dictionary
    results_dict = {
        "jump_metrics": {
            "max_relative_jump": float(max(0, max_jump_height)),
            "max_high_jump": float(max(0, salto_alto)),
            "peak_power_sayer": float(peak_power_sayer),
            "repetitions": int(repetition_count),
            "reference_height": float(reference_height),
            "body_mass_kg": float(body_mass_kg),
            "px_per_meter": float(PX_PER_METER) if PX_PER_METER is not None else 0.0
        },
        "video_analysis": {
            "input_video": str(input_video),
            "output_video": str(output_video),
            "fps": float(fps),
            "resolution": f"{int(width)}x{int(height)}"
        },
        "repetition_data": [
            {
                "repetition": int(rep["repetition"]),
                "relative_jump_m": float(rep["relative_jump_m"]),
                "absolute_jump_m": float(rep["absolute_jump_m"]),
                "peak_power_watts": float(rep["peak_power_watts"])
            } for rep in repetition_data
        ]
    }
    
    cap.release()
    out.release()
    
    return results_dict


def calculate_peak_power_sayer(jump_height_m, body_mass_kg):
    """
    Estimates peak anaerobic power using Sayer's equation.
    
    Args:
        jump_height_m: Jump height in meters
        body_mass_kg: Body mass in kg
        
    Returns:
        Estimated peak power in watts
    """
    jump_height_cm = jump_height_m * 100
    return (60.7 * jump_height_cm) + (45.3 * body_mass_kg) - 2055


def calculate_absolute_jump_height(reference_height, relative_jump):
    """
    Calculate absolute jump height based on reference height and relative jump.
    
    Args:
        reference_height: Reference height in meters
        relative_jump: Relative jump height in meters
        
    Returns:
        Absolute jump height in meters
    """
    absolute_jump = reference_height + relative_jump
    # Apply validation rule
    if absolute_jump > 1.72:
        return absolute_jump
    else:
        return 0


def draw_metrics_overlay(frame, max_jump_height, salto_alto, velocity_vertical, peak_power_sayer, 
                        repetition_count, last_detected_ankles_y, initial_left_shoulder_x, 
                        initial_right_shoulder_x, width, height, colors, metrics_below_feet_offset=20,
                        horizontal_offset_factor=0.75):
    """
    Draw metrics overlay on the frame.
    
    Args:
        frame: Input frame
        max_jump_height: Maximum jump height in meters
        salto_alto: Absolute jump height in meters
        velocity_vertical: Vertical velocity in m/s
        peak_power_sayer: Peak power in watts
        repetition_count: Number of repetitions
        last_detected_ankles_y: Y-coordinate of last detected ankles
        initial_left_shoulder_x: X-coordinate of left shoulder
        initial_right_shoulder_x: X-coordinate of right shoulder
        width: Frame width
        height: Frame height
        colors: Dictionary with color values
        metrics_below_feet_offset: Offset for metrics below feet
        horizontal_offset_factor: Factor for horizontal offset
        
    Returns:
        Frame with metrics overlay
    """
    overlay = frame.copy()
    alpha = 0.7
    font = cv2.FONT_HERSHEY_SIMPLEX
    font_scale_title_metric = 0.5
    font_scale_value = 0.7
    font_scale_title_main = 1.2  # Scale for main title (larger)
    font_thickness_metric = 1
    font_thickness_title_main = 1  # Thickness for main title
    line_height_title_metric = int(20 * 1.2)
    line_height_value = int(25 * 1.2)
    padding_vertical = int(15 * 1.2)
    padding_horizontal = int(15 * 1.2)
    text_color_title = colors["light_gray"]
    text_color_value = colors["white"]
    text_color_title_main = colors["white"]
    bg_color = colors["gray"]
    border_color = colors["white"]
    border_thickness = 1
    corner_radius = 10
    spacing_horizontal = 30
    title_y_offset = 50  # Lower vertical position of title
    metrics_y_offset_alto = 80  # Adjust Salto Alto position to leave space below
    metrics_y_offset_relativo = None  # Will be calculated dynamically
    metrics_y_offset_velocidad = None  # Will be calculated dynamically
    metrics_y_offset_potencia = None  # Will be calculated dynamically
    
    # Helper function to draw rounded rectangles
    def draw_rounded_rect(img, pt1, pt2, color, thickness=-1, lineType=cv2.LINE_AA, radius=10):
        x1, y1 = pt1
        x2, y2 = pt2
        w = x2 - x1
        h = y2 - y1
        if radius > 0:
            img = cv2.ellipse(img, (x1 + radius, y1 + radius), (radius, radius), 0, 0, 90, color, thickness, lineType)
            img = cv2.ellipse(img, (x2 - radius, y1 + radius), (radius, radius), 0, 90, 180, color, thickness, lineType)
            img = cv2.ellipse(img, (x2 - radius, y2 - radius), (radius, radius), 0, 180, 270, color, thickness, lineType)
            img = cv2.ellipse(img, (x1 + radius, y2 - radius), (radius, radius), 0, 270, 360, color, thickness, lineType)
            
            img = cv2.rectangle(img, (x1, y1 + radius), (x2, y2 - radius), color, thickness, lineType)
            img = cv2.rectangle(img, (x1 + radius, y1), (x2 - radius, y2), color, thickness, lineType)
        else:
            img = cv2.rectangle(img, pt1, pt2, color, thickness, lineType)
        return img
    
    # --- Main Title ---
    title_text = "Ejercicio de Salto"
    title_text_size = cv2.getTextSize(title_text, font, font_scale_title_main, font_thickness_title_main)[0]
    title_x = (width - title_text_size[0]) // 2
    title_y = title_y_offset
    cv2.putText(overlay, title_text, (title_x, title_y), font, font_scale_title_main, text_color_title_main, font_thickness_title_main, cv2.LINE_AA)
    
    # --- Relative Jump Box (dynamically positioned) ---
    relativo_text = "SALTO RELATIVO"
    relativo_value = f"{max(0, max_jump_height):.2f} m"
    relativo_text_size = cv2.getTextSize(relativo_text, font, font_scale_title_metric, font_thickness_metric)[0]
    relativo_value_size = cv2.getTextSize(relativo_value, font, font_scale_value, font_thickness_metric)[0]
    bg_width_relativo = max(relativo_text_size[0], relativo_value_size[0]) + 2 * padding_horizontal
    bg_height_relativo = line_height_title_metric + line_height_value + 2 * padding_vertical
    x_relativo = 20
    
    if last_detected_ankles_y is not None and bg_height_relativo is not None:
        metrics_y_offset_relativo = int(last_detected_ankles_y - bg_height_relativo - 10)  # 10 pixels above ankle
        # Make sure box doesn't go off top
        if metrics_y_offset_relativo < title_y_offset + 50:
            metrics_y_offset_relativo = int(last_detected_ankles_y + metrics_below_feet_offset)  # Show below
    else:
        metrics_y_offset_relativo = height - 150  # Default position if ankles not detected
    
    if metrics_y_offset_relativo is not None:
        y_relativo = metrics_y_offset_relativo
        pt1_relativo = (x_relativo, y_relativo)
        pt2_relativo = (x_relativo + bg_width_relativo, y_relativo + bg_height_relativo)
        overlay = draw_rounded_rect(overlay, pt1_relativo, pt2_relativo, bg_color, cv2.FILLED, cv2.LINE_AA, corner_radius)
        cv2.rectangle(overlay, pt1_relativo, pt2_relativo, border_color, border_thickness, cv2.LINE_AA)
        cv2.putText(overlay, relativo_text, (x_relativo + (bg_width_relativo - relativo_text_size[0]) // 2, y_relativo + padding_vertical + line_height_title_metric // 2 + 2), font, font_scale_title_metric, text_color_title, font_thickness_metric, cv2.LINE_AA)
        cv2.putText(overlay, relativo_value, (x_relativo + (bg_width_relativo - relativo_value_size[0]) // 2, y_relativo + padding_vertical + line_height_title_metric + line_height_value // 2 + 5), font, font_scale_value, text_color_value, font_thickness_metric, cv2.LINE_AA)
    
    # --- High Jump Box (stays in top right) ---
    alto_text = "SALTO ALTO"
    alto_value = f"{max(0, salto_alto):.2f} m"
    alto_text_size = cv2.getTextSize(alto_text, font, font_scale_title_metric, font_thickness_metric)[0]
    alto_value_size = cv2.getTextSize(alto_value, font, font_scale_value, font_thickness_metric)[0]
    bg_width_alto = max(alto_text_size[0], alto_value_size[0]) + 2 * padding_horizontal
    bg_height_alto = line_height_title_metric + line_height_value + 2 * padding_vertical
    x_alto = width - bg_width_alto - 20  # Default position near right edge
    
    if initial_right_shoulder_x is not None:
        available_space = width - initial_right_shoulder_x
        x_alto_calculated = initial_right_shoulder_x + int(available_space * (1 - horizontal_offset_factor)) - bg_width_alto
        # Make sure doesn't go off left edge and there's space from first box
        if x_alto_calculated > x_relativo + bg_width_relativo + spacing_horizontal + 10 and x_alto_calculated + bg_width_alto < width - 10:
            x_alto = x_alto_calculated
    y_alto = metrics_y_offset_alto
    pt1_alto = (x_alto, y_alto)
    pt2_alto = (x_alto + bg_width_alto, y_alto + bg_height_alto)
    overlay = draw_rounded_rect(overlay, pt1_alto, pt2_alto, bg_color, cv2.FILLED, cv2.LINE_AA, corner_radius)
    cv2.rectangle(overlay, pt1_alto, pt2_alto, border_color, border_thickness, cv2.LINE_AA)
    cv2.putText(overlay, alto_text, (x_alto + (bg_width_alto - alto_text_size[0]) // 2, y_alto + padding_vertical + line_height_title_metric // 2 + 2), font, font_scale_title_metric, text_color_title, font_thickness_metric, cv2.LINE_AA)
    cv2.putText(overlay, alto_value, (x_alto + (bg_width_alto - alto_value_size[0]) // 2, y_alto + padding_vertical + line_height_title_metric + line_height_value // 2 + 5), font, font_scale_value, text_color_value, font_thickness_metric, cv2.LINE_AA)
    
    # --- Repetitions Box ---
    reps_text = "REPETICIONES"
    reps_value = f"{repetition_count}"
    reps_text_size = cv2.getTextSize(reps_text, font, font_scale_title_metric, font_thickness_metric)[0]
    reps_value_size = cv2.getTextSize(reps_value, font, font_scale_value, font_thickness_metric)[0]
    bg_width_reps = max(reps_text_size[0], reps_value_size[0]) + 2 * padding_horizontal
    bg_height_reps = line_height_title_metric + line_height_value + 2 * padding_vertical
    x_reps = x_relativo
    y_reps = y_relativo + bg_height_relativo + 10
    
    pt1_reps = (x_reps, y_reps)
    pt2_reps = (x_reps + bg_width_reps, y_reps + bg_height_reps)
    overlay = draw_rounded_rect(overlay, pt1_reps, pt2_reps, bg_color, cv2.FILLED, cv2.LINE_AA, corner_radius)
    cv2.rectangle(overlay, pt1_reps, pt2_reps, border_color, border_thickness, cv2.LINE_AA)
    cv2.putText(overlay, reps_text, (x_reps + (bg_width_reps - reps_text_size[0]) // 2, y_reps + padding_vertical + line_height_title_metric // 2 + 2), font, font_scale_title_metric, text_color_title, font_thickness_metric, cv2.LINE_AA)
    cv2.putText(overlay, reps_value, (x_reps + (bg_width_reps - reps_value_size[0]) // 2, y_reps + padding_vertical + line_height_title_metric + line_height_value // 2 + 5), font, font_scale_value, text_color_value, font_thickness_metric, cv2.LINE_AA)
    
    # --- Vertical Velocity Box (below feet) ---
    if last_detected_ankles_y is not None:
        velocidad_text = "VELOCIDAD VERTICAL"
        velocidad_value = f"{abs(velocity_vertical):.2f} m/s"  # Show absolute value
        velocidad_text_size = cv2.getTextSize(velocidad_text, font, font_scale_title_metric, font_thickness_metric)[0]
        velocidad_value_size = cv2.getTextSize(velocidad_value, font, font_scale_value, font_thickness_metric)[0]
        bg_width_velocidad = max(velocidad_text_size[0], velocidad_value_size[0]) + 2 * padding_horizontal
        bg_height_velocidad = line_height_title_metric + line_height_value + 2 * padding_vertical
        
        x_velocidad = int(width / 2 - bg_width_velocidad / 2)  # Horizontally centered
        y_velocidad = int(last_detected_ankles_y + metrics_below_feet_offset + bg_height_velocidad)
        
        pt1_velocidad = (int(x_velocidad), int(y_velocidad - bg_height_velocidad))
        pt2_velocidad = (int(x_velocidad + bg_width_velocidad), int(y_velocidad))
        overlay = draw_rounded_rect(overlay, pt1_velocidad, pt2_velocidad, bg_color, cv2.FILLED, cv2.LINE_AA, corner_radius)
        cv2.rectangle(overlay, pt1_velocidad, pt2_velocidad, border_color, border_thickness, cv2.LINE_AA)
        cv2.putText(overlay, velocidad_text, (int(x_velocidad + (bg_width_velocidad - velocidad_text_size[0]) // 2), int(y_velocidad - bg_height_velocidad + padding_vertical + line_height_title_metric // 2 + 2)), font, font_scale_title_metric, text_color_title, font_thickness_metric, cv2.LINE_AA)
        cv2.putText(overlay, velocidad_value, (int(x_velocidad + (bg_width_velocidad - velocidad_value_size[0]) // 2), int(y_velocidad - bg_height_velocidad + padding_vertical + line_height_title_metric + line_height_value // 2 + 5)), font, font_scale_value, text_color_value, font_thickness_metric, cv2.LINE_AA)
        
        # --- Sayer Power Box (below velocity box) ---
        potencia_text = "POTENCIA SAYER"
        potencia_value = f"{peak_power_sayer:.2f} W"
        potencia_text_size = cv2.getTextSize(potencia_text, font, font_scale_title_metric, font_thickness_metric)[0]
        potencia_value_size = cv2.getTextSize(potencia_value, font, font_scale_value, font_thickness_metric)[0]
        bg_width_potencia = max(potencia_text_size[0], potencia_value_size[0]) + 2 * padding_horizontal
        bg_height_potencia = line_height_title_metric + line_height_value + 2 * padding_vertical
        
        x_potencia = x_velocidad  # Same horizontal position as velocity
        y_potencia = y_velocidad + 5  # Below velocity box
        
        pt1_potencia = (int(x_potencia), int(y_potencia))
        pt2_potencia = (int(x_potencia + bg_width_potencia), int(y_potencia + bg_height_potencia))
        overlay = draw_rounded_rect(overlay, pt1_potencia, pt2_potencia, bg_color, cv2.FILLED, cv2.LINE_AA, corner_radius)
        cv2.rectangle(overlay, pt1_potencia, pt2_potencia, border_color, border_thickness, cv2.LINE_AA)
        cv2.putText(overlay, potencia_text, (int(x_potencia + (bg_width_potencia - potencia_text_size[0]) // 2), int(y_potencia + padding_vertical + line_height_title_metric // 2 + 2)), font, font_scale_title_metric, text_color_title, font_thickness_metric, cv2.LINE_AA)
        cv2.putText(overlay, potencia_value, (int(x_potencia + (bg_width_potencia - potencia_value_size[0]) // 2), int(y_potencia + padding_vertical + line_height_title_metric + line_height_value // 2 + 5)), font, font_scale_value, text_color_value, font_thickness_metric, cv2.LINE_AA)
    
    # Blend overlay with original frame
    result = cv2.addWeighted(overlay, alpha, frame, 1 - alpha, 0)
    return result