SoloAudio / app.py
OpenSound's picture
Update app.py
861c549 verified
import gradio as gr
import spaces
import yaml
import torch
import librosa
import torchaudio
from diffusers import DDIMScheduler
from transformers import AutoProcessor, ClapModel, ClapConfig
from model.udit import UDiT
from vae_modules.autoencoder_wrapper import Autoencoder
import numpy as np
from huggingface_hub import hf_hub_download
clap_bin_path = hf_hub_download("laion/larger_clap_general", "pytorch_model.bin")
# from huggingface_hub import snapshot_download
# snapshot_download(repo_id="laion/larger_clap_general",
# local_dir="./larger_clap_general",
# local_dir_use_symlinks=False)
diffusion_config = './config/SoloAudio.yaml'
diffusion_ckpt = './pretrained_models/soloaudio_v2.pt'
autoencoder_path = './pretrained_models/audio-vae.pt'
uncond_path = './pretrained_models/uncond.npz'
sample_rate = 24000
device = 'cuda' if torch.cuda.is_available() else 'cpu'
with open(diffusion_config, 'r') as fp:
diff_config = yaml.safe_load(fp)
v_prediction = diff_config["ddim"]["v_prediction"]
processor = AutoProcessor.from_pretrained('laion/larger_clap_general')
clap_config = ClapConfig.from_pretrained("laion/larger_clap_general")
clapmodel = ClapModel(clap_config)
clap_ckpt = torch.load(clap_bin_path, map_location='cpu')
clapmodel.load_state_dict(clap_ckpt)
clapmodel.to(device)
# clapmodel = ClapModel.from_pretrained("laion/larger_clap_general").to(device)
autoencoder = Autoencoder(autoencoder_path, 'stable_vae', quantization_first=True)
autoencoder.eval()
autoencoder = autoencoder.float().to(device)
unet = UDiT(
**diff_config['diffwrap']['UDiT']
).to(device)
unet.load_state_dict(torch.load(diffusion_ckpt)['model'])
unet.eval()
if v_prediction:
print('v prediction')
scheduler = DDIMScheduler(**diff_config["ddim"]['diffusers'])
else:
print('noise prediction')
scheduler = DDIMScheduler(**diff_config["ddim"]['diffusers'])
@spaces.GPU
def reset_scheduler_dtype():
latents = torch.randn((1, 128, 128), device="cuda")
noise = torch.randn_like(latents)
timesteps = torch.randint(
0,
scheduler.config.num_train_timesteps,
(latents.shape[0],),
device=latents.device
)
_ = scheduler.add_noise(latents, noise, timesteps)
return "Scheduler dtype reset completed."
@spaces.GPU
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
"""
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
"""
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
# rescale the results from guidance (fixes overexposure)
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
return noise_cfg
@spaces.GPU
def sample_diffusion(mixture, timbre, ddim_steps=50, eta=0, seed=2023, guidance_scale=False, guidance_rescale=0.0,):
with torch.no_grad():
scheduler.set_timesteps(ddim_steps)
generator = torch.Generator(device=device).manual_seed(seed)
# init noise
noise = torch.randn(mixture.shape, generator=generator, device=device)
pred = noise
for t in scheduler.timesteps:
pred = scheduler.scale_model_input(pred, t)
if guidance_scale:
uncond = torch.tensor(np.load(uncond_path)['arr_0']).unsqueeze(0).to(device)
pred_combined = torch.cat([pred, pred], dim=0)
mixture_combined = torch.cat([mixture, mixture], dim=0)
timbre_combined = torch.cat([timbre, uncond], dim=0)
output_combined = unet(x=pred_combined, timesteps=t, mixture=mixture_combined, timbre=timbre_combined)
output_pos, output_neg = torch.chunk(output_combined, 2, dim=0)
model_output = output_neg + guidance_scale * (output_pos - output_neg)
if guidance_rescale > 0.0:
# avoid overexposed
model_output = rescale_noise_cfg(model_output, output_pos,
guidance_rescale=guidance_rescale)
else:
model_output = unet(x=pred, timesteps=t, mixture=mixture, timbre=timbre)
pred = scheduler.step(model_output=model_output, timestep=t, sample=pred,
eta=eta, generator=generator).prev_sample
pred = autoencoder(embedding=pred).squeeze(1)
return pred
@spaces.GPU
def tse(gt_file_input, text_input, num_infer_steps, eta, seed, guidance_scale, guidance_rescale):
reset_scheduler_dtype()
with torch.no_grad():
# mixture, _ = librosa.load(gt_file_input, sr=sample_rate)
mixture, sr = torchaudio.load(gt_file_input)
if sr != sample_rate:
resampler = torchaudio.transforms.Resample(orig_freq=sr, new_freq=sample_rate)
mixture = resampler(mixture)
sr = sample_rate
if mixture.shape[0] > 1:
mixture = torch.mean(mixture, dim=0)
else:
mixture = mixture[0]
# Check the length of the audio in samples
current_length = len(mixture)
target_length = sample_rate * 10
# Cut or pad the audio to match the target length
if current_length > target_length:
# Trim the audio if it's longer than the target length
mixture = mixture[:target_length]
elif current_length < target_length:
# Pad the audio with zeros if it's shorter than the target length
padding = target_length - current_length
mixture = np.pad(mixture, (0, padding), mode='constant')
mixture = torch.tensor(mixture).unsqueeze(0).to(device)
mixture = autoencoder(audio=mixture.unsqueeze(1))
text_inputs = processor(
text=[text_input],
max_length=10, # Fixed length for text
padding='max_length', # Pad text to max length
truncation=True, # Truncate text if it's longer than max length
return_tensors="pt"
)
inputs = {
"input_ids": text_inputs["input_ids"][0].unsqueeze(0), # Text input IDs
"attention_mask": text_inputs["attention_mask"][0].unsqueeze(0), # Attention mask for text
}
inputs = {key: value.to(device) for key, value in inputs.items()}
timbre = clapmodel.get_text_features(**inputs)
# mixture = autoencoder(embedding=mixture).squeeze(1)
pred = sample_diffusion(mixture, timbre, num_infer_steps, eta, seed, guidance_scale, guidance_rescale)
return sample_rate, pred.squeeze().cpu().numpy()
# return sample_rate, mixture.squeeze().cpu().numpy()
# CSS styling (optional)
css = """
#col-container {
margin: 0 auto;
max-width: 1280px;
}
"""
# Gradio Blocks layout
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("""
# SoloAudio: Target Sound Extraction with Language-oriented Audio Diffusion Transformer
πŸ”§ Tips: Adjust advanced settings for more control. This space only supports a 10-second audio input now.
πŸ’‘ If you're looking to extract a specific speaker's voice, try [SoloSpeech](https://huggingface.co/spaces/OpenSound/SoloSpeech).
πŸ”— Learn more about 🎯**SoloAudio** on the [SoloAudio Homepage](https://wanghelin1997.github.io/SoloAudio-Demo/).
""")
with gr.Tab("Target Sound Extraction"):
# Basic Input: Text prompt
with gr.Row():
gt_file_input = gr.Audio(
label="Upload Audio Mixture",
type="filepath",
value="demo/0_mix.wav"
)
with gr.Row(equal_height=True):
text_input = gr.Textbox(
label="Describe The Sound You Want to Extract",
show_label=True,
max_lines=2,
placeholder="Enter your prompt",
value="The sound of gunshot",
container=True,
scale=4
)
run_button = gr.Button("Extract", scale=1)
# Output Component
result = gr.Audio(label="Extracted Audio Stem", type="numpy")
# Advanced settings in an Accordion
with gr.Accordion("Advanced Settings", open=False):
# Audio Length
guidance_scale = gr.Slider(minimum=1.0, maximum=10, step=0.1, value=3.0, label="Guidance Scale")
guidance_rescale = gr.Slider(minimum=0.0, maximum=1, step=0.05, value=0., label="Guidance Rescale")
num_infer_steps = gr.Slider(minimum=25, maximum=200, step=5, value=50, label="DDIM Steps")
eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.0, label="Eta")
seed = gr.Slider(minimum=0, maximum=100, step=1, value=0, label="Seed")
# Define the trigger and input-output linking for generation
run_button.click(
fn=tse,
inputs=[gt_file_input, text_input, num_infer_steps, eta, seed, guidance_scale, guidance_rescale],
outputs=[result]
)
text_input.submit(fn=tse,
inputs=[gt_file_input, text_input, num_infer_steps, eta, seed, guidance_scale, guidance_rescale],
outputs=[result]
)
# Launch the Gradio demo
demo.launch()