Spaces:
Sleeping
Sleeping
from easydict import EasyDict | |
obs_shape = 24 | |
act_shape = 4 | |
bipedalwalker_sac_gail_default_config = dict( | |
exp_name='bipedalwalker_sac_gail_seed0', | |
env=dict( | |
collector_env_num=8, | |
evaluator_env_num=5, | |
# (bool) Scale output action into legal range. | |
act_scale=True, | |
n_evaluator_episode=5, | |
stop_value=300, | |
rew_clip=True, | |
# The path to save the game replay | |
replay_path=None, | |
), | |
reward_model=dict( | |
type='gail', | |
input_size=obs_shape + act_shape, | |
hidden_size=64, | |
batch_size=64, | |
learning_rate=1e-3, | |
update_per_collect=100, | |
# Users should add their own model path here. Model path should lead to a model. | |
# Absolute path is recommended. | |
# In DI-engine, it is ``exp_name/ckpt/ckpt_best.pth.tar``. | |
expert_model_path='model_path_placeholder', | |
# Path where to store the reward model | |
reward_model_path='data_path_placeholder+/reward_model/ckpt/ckpt_best.pth.tar', | |
# Users should add their own data path here. Data path should lead to a file to store data or load the stored data. | |
# Absolute path is recommended. | |
# In DI-engine, it is usually located in ``exp_name`` directory | |
data_path='data_path_placeholder', | |
collect_count=100000, | |
), | |
policy=dict( | |
cuda=False, | |
priority=False, | |
random_collect_size=1000, | |
model=dict( | |
obs_shape=obs_shape, | |
action_shape=act_shape, | |
twin_critic=True, | |
action_space='reparameterization', | |
actor_head_hidden_size=128, | |
critic_head_hidden_size=128, | |
), | |
learn=dict( | |
update_per_collect=1, | |
batch_size=128, | |
learning_rate_q=0.001, | |
learning_rate_policy=0.001, | |
learning_rate_alpha=0.0003, | |
ignore_done=True, | |
target_theta=0.005, | |
discount_factor=0.99, | |
auto_alpha=True, | |
value_network=False, | |
), | |
collect=dict( | |
n_sample=128, | |
unroll_len=1, | |
), | |
other=dict(replay_buffer=dict(replay_buffer_size=100000, ), ), | |
), | |
) | |
bipedalwalker_sac_gail_default_config = EasyDict(bipedalwalker_sac_gail_default_config) | |
main_config = bipedalwalker_sac_gail_default_config | |
bipedalwalker_sac_gail_create_config = dict( | |
env=dict( | |
type='bipedalwalker', | |
import_names=['dizoo.box2d.bipedalwalker.envs.bipedalwalker_env'], | |
), | |
env_manager=dict(type='subprocess'), | |
policy=dict( | |
type='sac', | |
import_names=['ding.policy.sac'], | |
), | |
replay_buffer=dict(type='naive', ), | |
) | |
bipedalwalker_sac_gail_create_config = EasyDict(bipedalwalker_sac_gail_create_config) | |
create_config = bipedalwalker_sac_gail_create_config | |
if __name__ == "__main__": | |
# or you can enter `ding -m serial_gail -c bipedalwalker_sac_gail_config.py -s 0` | |
# then input the config you used to generate your expert model in the path mentioned above | |
# e.g. bipedalwalker_sac_config.py | |
from ding.entry import serial_pipeline_gail | |
from dizoo.box2d.bipedalwalker.config import bipedalwalker_sac_config, bipedalwalker_sac_create_config | |
expert_main_config = bipedalwalker_sac_config | |
expert_create_config = bipedalwalker_sac_create_config | |
serial_pipeline_gail( | |
[main_config, create_config], [expert_main_config, expert_create_config], seed=0, collect_data=True | |
) | |